#数検準1級1次過去問#極限#ますただ - 質問解決D.B.(データベース)

#数検準1級1次過去問#極限#ますただ

問題文全文(内容文):
以下の極限を解け。
$\displaystyle \lim_{ n \to \infty } \{2\sqrt{ n^2+4n }-\sqrt{ 4n^2+5n }\}$

出典:数検準1級1次
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
以下の極限を解け。
$\displaystyle \lim_{ n \to \infty } \{2\sqrt{ n^2+4n }-\sqrt{ 4n^2+5n }\}$

出典:数検準1級1次
投稿日:2024.07.28

<関連動画>

数検準1級2次過去問【2020年12月】2番:数列

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$ $a_1=10,a_{n+1}=\sqrt[5]{a_n}$である.

(1)一般項$a_n$を求めよ.
(2)$P_n=a_1 \times \cdots \times a_n$を求めよ.
この動画を見る 

数検準1級1次(6番 双曲線)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定準1級
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$双曲線$x^2-y^2=2$の焦点の座標を求めよ.
この動画を見る 

数検準1級2次過去問【2020年12月】5番:整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$boxed{5}$ $m,n\in IN$とする.

(1)$100!=2^m \times (奇数)$と表したときの$m$の値を求めよ.
(2)$50!=n^2\times (互いに異なる素数の積)$と表したときの
素因数分解した形で表せ.
この動画を見る 

#数学検定準1級2次過去問#70「根性出すしかないんかなー」 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^4(1-x)^4}{1+x^2} dx$

出典:数検準1級2次
この動画を見る 

数検準1級1次(5番 積分)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$これを解け.

(1)$\displaystyle \int_{}^{} \dfrac{1}{x^2\ e^{\frac{1}{x}}}$
(2)$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{x^2\ e^{\frac{1}{2}}}$
この動画を見る 
PAGE TOP