#数検準1級1次過去問#極限#ますただ - 質問解決D.B.(データベース)

#数検準1級1次過去問#極限#ますただ

問題文全文(内容文):
以下の極限を解け。
$\displaystyle \lim_{ n \to \infty } \{2\sqrt{ n^2+4n }-\sqrt{ 4n^2+5n }\}$

出典:数検準1級1次
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
以下の極限を解け。
$\displaystyle \lim_{ n \to \infty } \{2\sqrt{ n^2+4n }-\sqrt{ 4n^2+5n }\}$

出典:数検準1級1次
投稿日:2024.07.28

<関連動画>

数検準1級1次(7番 極限値)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$ $\displaystyle \lim_{x\to 0}\ \dfrac{1}{x}\left(\frac{1}{\sin x}-\dfrac{1}{\tan x}\right)$
これを解け.
この動画を見る 

#3 数検準1級2次過去問 三角関数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$\tan \alpha=k,-\dfrac{\pi}{2}\lt \alpha \lt \dfrac{\pi}{2}$をみたす
$\alpha$を$T(k)$で表す

(1)$xy\neq 1$のとき,
$ \\\ \tan (T(x)+T(y))$

(2)$4T\left(\dfrac{1}{5}\right)-T\left(\dfrac{1}{239}\right)=\dfrac{\pi}{4}$を示せ.
*$-\dfrac{\pi}{2} \lt \beta\lt \dfrac{\pi}{2}$は利用してよい.
この動画を見る 

20年5月数学検定準1級1次試験(三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣ $0 \leqq θ < 2\pi$
$\sqrt 2 cosθ - \sqrt 2 sinθ = 1$
この動画を見る 

練習問題9(数検準1級 教員採用試験 極限値からの区分求積法)【難】

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
限値からの区分求積法を解説していきます.
この動画を見る 

数検準1級1次過去問(7番 極限値)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } n \{ log(n+3) - logn \}$
$\displaystyle \lim_{ n \to \infty } (1+\frac{1}{n})^n = \displaystyle \lim_{ n \to 0 } (1+n)^{\frac{1}{n}}=e$
この動画を見る 
PAGE TOP