福田の数学〜慶應義塾大学2024年医学部第3問〜四面体の切断面の面積と極限 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年医学部第3問〜四面体の切断面の面積と極限

問題文全文(内容文):
$\Large\boxed{3}$ -1,0,1以外のすべての実数$x$に対して定義された関数
$f(x)$=$\displaystyle\frac{1}{3x(x^2-1)}$
を考える。
(1)$f(x)$は$x$=$\boxed{\ \ (あ)\ \ }$において極小値$\boxed{\ \ (い)\ \ }$をとり、$x$=$\boxed{\ \ (う)\ \ }$において極大値$\boxed{\ \ (え)\ \ }$をとる。
(2)曲線$y$=$f(x)$の概形を描きなさい。
(3)直線$y$=$mx$が曲線$y$=$f(x)$とちょうど4点で交わるとき、定数$m$の値の範囲は$\boxed{\ \ (お)\ \ }$である。
(4)$a$=$\boxed{\ \ (か)\ \ }$, $b$=$\boxed{\ \ (き)\ \ }$, $c$=$\boxed{\ \ (く)\ \ }$とすると、つぎの恒等式が成り立つ。
$f(x)$=$\displaystyle\frac{a}{x-1}$+$\displaystyle\frac{b}{x}$+$\displaystyle\frac{c}{x+1}$
(5)直線$y$=$mx$ (ただし$m$>0)が曲線$y$=$f(x)$と第1象限において交わる点Pの$x$座標を$x(m)$とし、
$A(m)$=$\displaystyle\lim_{T \to \infty}\int_{x(m)}^Tf(x)dx$
とおいて、$A(m)$を$m$の式で表すと、$A(m)$=$\boxed{\ \ (け)\ \ }$となる。また、原点をO、$\left(x(m),0\right)$を座標とする点をQとし、三角形OPQの面積を$B(m)$とおくと$\displaystyle\lim_{m \to +0}\frac{A(m)}{B(m)}$=$\boxed{\ \ (こ)\ \ }$ となる。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ -1,0,1以外のすべての実数$x$に対して定義された関数
$f(x)$=$\displaystyle\frac{1}{3x(x^2-1)}$
を考える。
(1)$f(x)$は$x$=$\boxed{\ \ (あ)\ \ }$において極小値$\boxed{\ \ (い)\ \ }$をとり、$x$=$\boxed{\ \ (う)\ \ }$において極大値$\boxed{\ \ (え)\ \ }$をとる。
(2)曲線$y$=$f(x)$の概形を描きなさい。
(3)直線$y$=$mx$が曲線$y$=$f(x)$とちょうど4点で交わるとき、定数$m$の値の範囲は$\boxed{\ \ (お)\ \ }$である。
(4)$a$=$\boxed{\ \ (か)\ \ }$, $b$=$\boxed{\ \ (き)\ \ }$, $c$=$\boxed{\ \ (く)\ \ }$とすると、つぎの恒等式が成り立つ。
$f(x)$=$\displaystyle\frac{a}{x-1}$+$\displaystyle\frac{b}{x}$+$\displaystyle\frac{c}{x+1}$
(5)直線$y$=$mx$ (ただし$m$>0)が曲線$y$=$f(x)$と第1象限において交わる点Pの$x$座標を$x(m)$とし、
$A(m)$=$\displaystyle\lim_{T \to \infty}\int_{x(m)}^Tf(x)dx$
とおいて、$A(m)$を$m$の式で表すと、$A(m)$=$\boxed{\ \ (け)\ \ }$となる。また、原点をO、$\left(x(m),0\right)$を座標とする点をQとし、三角形OPQの面積を$B(m)$とおくと$\displaystyle\lim_{m \to +0}\frac{A(m)}{B(m)}$=$\boxed{\ \ (こ)\ \ }$ となる。
投稿日:2024.06.25

<関連動画>

福田の数学〜立教大学2021年経済学部第2問〜2項間の漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)$
また、$n$に無関係な定数$p,q$に対し、
$b_n=a_n+pn+q (n=1,2,3,\ldots)$
とおく。このとき次の問いに答えよ。
(1)$n,p,q$に無関係な定数$A,B,C,D,E$が
$b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)$
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。
(2)Aを(1)で求めた値とする。数列$\left\{b_n\right\}$が公比$A$の等比数列となるような
$p,q$の値をそれぞれ求めよ。
(3)(2)で求めた$p,q$の値に対して、数列$\left\{b_n\right\}$の一般項を求めよ。

2021立教大学経済学部過去問
この動画を見る 

大学入試問題#468「パズルで遊ぶ感じ」 岩手大学(2022) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$g(x)=f(x)e^{-x}$
(1)
$f'(x)=f(x)+g'(x)e^x$を示せ

(2)
$a$:定数
$f(x)=\displaystyle \int_{a}^{x} (f(t)-4te^{-t}) dt$
$f(0)=1$のとき$f(x),a$を求めよ

出典:2022年岩手大学 入試問題
この動画を見る 

大学入試問題#301 旭川医科大学(2011) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \lt \displaystyle \frac{\pi}{2}$
$\displaystyle \int_{0}^{x}(\displaystyle \frac{1}{\cos\ t}-\tan\ t)dt$

出典:2011年旭川医科大学 入試問題
この動画を見る 

#宮崎大学(2023) #不定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}dx$

出典:2023年宮崎大学
この動画を見る 

京都大 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{2Z+2i}{Z+2i}=\bar{ Z }$を満たす複素数$Z$をすべて求めよ

出典:2005年京都大学 過去問
この動画を見る 
PAGE TOP