【日本最速解答速報】2026年星薬科大学薬学部薬学科(6年制) 学校推薦型選抜 数学 解答速報【TAKAHASHI名人】 - 質問解決D.B.(データベース)

【日本最速解答速報】2026年星薬科大学薬学部薬学科(6年制) 学校推薦型選抜 数学 解答速報【TAKAHASHI名人】

問題文全文(内容文):
解答一覧
大問1 7 2 10 3 2 1
大問2 55 42 49 72
大問3 4 12 3 9 643
大問4 9 3 513 1213
チャプター:

0:00 大問1(1)
0:28 大問1(2)
1:02 大問1(3)
2:47 大問2(1)
4:28 大問2(2)
7:37 大問3(1)
9:17 大問3(2)
11:12 大問3(3)
12:25 大問4(1)
14:22 大問4(2)
15:18 まとめ

単元: #大学入試解答速報#数学#星薬科大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
解答一覧
大問1 7 2 10 3 2 1
大問2 55 42 49 72
大問3 4 12 3 9 643
大問4 9 3 513 1213
投稿日:2025.11.30

<関連動画>

福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。
・点Oは辺AB上にある。
・点Pは正六角形ABCDFの内部にある。
・点Qは線分CP上にある。
・三角形OCPと三角形OQFは共に正三角形である。

(1)四角形OQPFに着目すると、$\angle OFQ=\angle OPQ$より、
OQPFは円に内接する四角形なので、$\angle OPF=\boxed{\ \ アイ\ \ }°$とわかる。

(2)$AB //FC$に着目すると、$\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$である。$OC//FP$
であることに着目すると、$\triangle OCP=\triangle OCF$なので、$OC^2=\boxed{\ \ オ\ \ }$とわかる。
また、$OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }$である。

(3)$OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}$であり、
$\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }$
とおくと、$t$は$t^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0$を満たす。

2021明治大学全統過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題061〜早稲田大学2019年度社会科学部第1問〜円の通過範囲と放物線と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#大学入試解答速報#数学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を実数とする。座標平面において方程式
$x^2+y^2+x+(2k+1)y+k^2+1=0$
の表す図形$C$を考える。次の問いに答えよ。
(1)$C$が円であるような$k$の値の範囲を求めよ。ただし、点も円とみなすものとする。
(2)$k$が変化するとき、$C$が通る点($x,y$)の存在領域を座標平面上に図示せよ。
(3)(2)で求めた領域の境界線と(1)で求めた円が共有点をもたないような、$k$の値の
範囲を求めよ。

2019早稲田大学社会科学部過去問
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第1問(2)【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第1問(2)解説していきます.
この動画を見る 

【日本最速解答速報】2026年度東洋大学学校推薦型入試 基礎学力テスト型【数学】

アイキャッチ画像
単元: #大学入試解答速報#数学#東洋大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年11月30日(日)に実施された、2026年度東洋大学 学校推薦型入試 基礎学力テスト型の数学の解答速報です。

解答一覧
大問1(1)1(2)213(3)63(4)511(5)315
大問2(1)113(2)13127(3)23127(4)237
大問3(1)396(2)111225(3)315203
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}} (1)\ k \gt 0$として、次の定積分を考える。
$F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx$
このとき、$F(2)=\log(\boxed{\ \ ア\ \ })$となる。また、$\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
$⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}$
$⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}$

2021明治大学全統過去問
この動画を見る 
PAGE TOP