大学入試問題#291 愛知工業大学(2012) #定積分 - 質問解決D.B.(データベース)

大学入試問題#291 愛知工業大学(2012) #定積分

問題文全文(内容文):
$\displaystyle \int_{(\frac{\pi}{2})^2}^{\pi^2}\displaystyle \frac{\cos\sqrt{ x }}{\sqrt{ x }}dx$

出典:2012年愛知工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛知工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{(\frac{\pi}{2})^2}^{\pi^2}\displaystyle \frac{\cos\sqrt{ x }}{\sqrt{ x }}dx$

出典:2012年愛知工業大学 入試問題
投稿日:2022.08.25

<関連動画>

【別解の考え方自身は超大切…!】因数分解:法政大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#法政大学
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学高等学校

$(a^2+2a)^2-2(a^2+2a)-3$
を因数分解しなさい。
この動画を見る 

福田の数学〜約数の個数から元の数を特定する難問〜慶應義塾大学2023年総合政策学部第1問前編〜約数の個数と素因数分解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数nの正の約数の個数をd(n)と書くことにする。たとえば、 10 の正の約数は1 , 2 , 5 , 10 であるから d(10)= 4 である。
( 1 ) 2023 以下の正の整数nの中でd(n)=5となる数は$\fbox{ア}$個ある。
( 2 ) 2023 以下の正の整数nの中でd(n)=15となる数は$\fbox{イ}$個ある。
( 3 ) 2023 以下の正の整数nの中でd(n) が最大となるのは$n=\fbox{ウ}$のときである。

2023慶應義塾大学総合政策学部過去問
この動画を見る 

信州大 漸化式 ちょいと一工夫 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93信州大学過去問題
$a_1=\frac{1}{2}$ $a_{n+1}=a_n(2-a_n)$
一般項を求めよ。n自然数
この動画を見る 

福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
tを実数とし、座標空間に点$A(t-1,t,t+1)$をとる。また、(0,0,0),(1,0,0),
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を
Wとし、Wの体積をf(t)とする。
(1)f(-1)を求めよ。
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。

2022一橋大学文系過去問
この動画を見る 

福田の数学〜立教大学2024年理学部第3問〜放物線のx軸周りとy軸周りの回転体の体積バームクーヘン積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}O$を原点とする座標平面上に放物線$C:y=x-x^2$がある。$C$上の点$P(\frac{1}{2},\frac{1}{4})$における$C$の接線を$l$、$Q(1,0)$における$C$の接線を$m$とする。$l$と$y$軸、$m$と$y$軸の交点をそれぞれR、Sとする。
(1)$l,m$の方程式をそれぞれ求めよ。
(2)$C$の$0\leqq x \leqq 1$の部分と、2つの線分QS,OSで囲まれた図形の面積Aを求めよ。
(3)$C$の$0 leqq x \leqq 1$の部分と、線分OQで囲まれた図形を、$x$軸のまわりに1回転させてできる立体の体積$V_1$を求めよ。
(4)$C$の$0 \leqq x \leqq \frac{1}{2}$の部分と、2つの線分PR,ORで囲まれた図形を、$y$軸のまわりに1回転させてできる立体$V_2$を求めよ。
(5)$C$の$0 \leqq x \leqq 1$の部分と、線分OQで囲まれた図形を、$y$軸のまわりに1回転させてできる立体の体積$V_3$を求めよ。
この動画を見る 
PAGE TOP