2021入試予想問題~全国入試問題解法 - 質問解決D.B.(データベース)

2021入試予想問題~全国入試問題解法

問題文全文(内容文):
2021入試予想問題~全国入試問題解法

次の入試問題を解け。
$2021 = 43 × 47$

①$2025=45^2$であることを
利用して $2021$の約数を求めよ。

②$2025=45^2$であることを
利用して $2021$の約数を求めよ。

③以下の式を計算せよ
$2025^2+2020 \times 2021-4041 \times 2025$

④$2001+2002+2003+....+2021$
を計算せよ。
⑤$a,ℓ$:自然数、$a$を$ℓ$で割った余り$R_{ℓ}(a)$
(1)$R_{40} (2021), R_{40} (2021^2)$を求めよ。
(2)$R_{40} (2021^{2021})$を求めよ。

⑥ある整数$x$を$12$で割ると、
余りろとなりました。
このとき、$x$を$2021$倍した
$2021x$を$12$で割った余りを求めよ。

⑦ $3^{2021}$の一の位の数を求めなさい。
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2021入試予想問題~全国入試問題解法

次の入試問題を解け。
$2021 = 43 × 47$

①$2025=45^2$であることを
利用して $2021$の約数を求めよ。

②$2025=45^2$であることを
利用して $2021$の約数を求めよ。

③以下の式を計算せよ
$2025^2+2020 \times 2021-4041 \times 2025$

④$2001+2002+2003+....+2021$
を計算せよ。
⑤$a,ℓ$:自然数、$a$を$ℓ$で割った余り$R_{ℓ}(a)$
(1)$R_{40} (2021), R_{40} (2021^2)$を求めよ。
(2)$R_{40} (2021^{2021})$を求めよ。

⑥ある整数$x$を$12$で割ると、
余りろとなりました。
このとき、$x$を$2021$倍した
$2021x$を$12$で割った余りを求めよ。

⑦ $3^{2021}$の一の位の数を求めなさい。
投稿日:2020.12.31

<関連動画>

因数分解を解くコツをつかもう!~全国入試問題解法 #shorts, #数学, #高校受験, #頭の体操

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 9a-6b+5ab-3a^2-2b^2 $を因数分解せよ.

西大和学園高校過去問
この動画を見る 

数学を数楽に

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$(0.5)^4 = $
この動画を見る 

なんでこんなに速い?

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$255^2-245^2=??$
この動画を見る 

【論理的に合理的に…!】整数:立教新座高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#2次方程式#高校入試過去問(数学)#立教新座高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{24}{a^2+4a+3}$が$\color{blue}{自然数}$となるような$\color{orange}{整数a}$は$\color{orange}{何個}$ありますか.
※$ a^2+4a+3$は$0$ではない.

立教新座高校過去問
この動画を見る 

【高校受験対策/数学】死守-94

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守94

①$(-3)×5$を計算せよ。

②$\frac{x}{2}-2+(\frac{x}{5}-1)$を計算せよ。

③$24xy^2÷(-8xy)×2x$を計算せよ。

④$(\sqrt{3}+\sqrt{2})(2\sqrt{3}+\sqrt{2})+\frac{6}{\sqrt{6}}$を計算せよ。

⑤$(x-3)^2-(x+4)(x-4)$を計算せよ。

⑥$x^2-8x+12$を因数分解せよ。

⑦右の図のように、底面が正方形BCDEである正四角すいABCDEがある。
このとき、直線BCとねじれの位置にある直線をすべて書きなさい。

⑧気温は、高度が100$m$増すごとに0.6℃ずつ低くなる。
地上の気温が7.6℃のとき、地上から2000m上空の気温は何℃か求めよ。

⑨下の表は、あるクラスの13人のハンドボール投げの記録を、大きさの順に並べたものである。
この13人と太郎さんを合わせた14人の記録の中央値は、太郎さんを合わせる前の13人の記録の中央値と比べて、1$m$大きい。
このとき太郎さんの記録は何$m$か求めよ。
この動画を見る 
PAGE TOP