【数B】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。 - 質問解決D.B.(データベース)

【数B】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

問題文全文(内容文):
空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
チャプター:

0:00 オープニング
0:05 問題文
0:12 問題解説
1:45 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
投稿日:2020.10.20

<関連動画>

【数B】空間ベクトル:2直線の交点の位置ベクトル!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、辺ABを1:3に内分する点をL、点OCを3:1に内分する点をM、線分CLを3:2に内分する点をN、線分LMとONの交点をPとし、OA=a、OB=b、OC=cとするとき、OPをa,b,cで表せ。
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第3問〜四面体の内部に出来る八面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点O, A, B, Cを頂点とする四面体OABCを考える。辺OA, OB, OCの中点をそれぞれP, Q, Rとし、辺BC, CA, ABの中点をそれぞれS, T, Uとする。
(1)辺PS, QT, RUが1点で交わることを示せ。
(2)$OA^2$+$BC^2$=$OB^2$+$CA^2$=$OC^2$+$AB^2$ のとき、点P, Q, R, S, T, Uが同一球面上にあることを示せ。
(3)(2)において、辺PSが辺OA, BCと直交するとし、辺OA, BCの長さをそれぞれ$a$, $k$とする。点P, Q, R, S, T, Uを頂点とする八面体の体積$V$を$a$と$k$を用いて表せ。
(4)(3)において、$k$=1のとき八面体の体積$V$の最大値を求めよ。
この動画を見る 

【球面の方程式って?】球面の方程式の解釈と求め方を解説!〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
球面の方程式の解釈と求め方について解説します。
この動画を見る 

数学「大学入試良問集」【14−10空間ベクトルと正四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
各辺の長さが1の正四面体$OABC$に対し、$OB$を$2:1$に内分する点を$D,OC$を2等分する点を$E,BC$を2等分にする点を$F$とする。
$DE$と$OF$の交点を$G$とするとき、以下の各問いに答えよ。
(1)$OG$の長さを求めよ。
(2)$AG$の長さを求めよ。
この動画を見る 

福田の数学〜東北大学2024年理系第4問〜2つの球面の交わりの円

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $xyz$空間において、点$P_1$(3,-1,1)を中心とした半径$\sqrt 5$の球面$S_1$と、点$P_2$(5,0,-1)を中心とし半径が$\sqrt 2$の球面$S_2$を考える。
(1)線分$P_1P_2$の長さを求めよ。
(2)$S_1$と$S_2$が交わりをもつことを示せ。この交わりは円となる。この円をCとし、その中心を$P_3$とする。Cの半径および中心$P_3$の座標を求めよ。
(3)(2)の円Cに対し、Cを含む平面をHとする。$xy$平面とHの両方に平行で、大きさが1のベクトルを全て求めよ。
(4)点Qが(2)の円C上を動くとき、Qと$xy$平面の距離dの最大値を求めよ。
また、dの最大値を与える点Qの座標を求めよ。
この動画を見る 
PAGE TOP