【高校受験対策】数学-図形24 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形24

問題文全文(内容文):
問2
右の図の正四面体は、1辺の長さが8cmである。辺$BC$、$CD$の中点をそれぞれ点$P$、Q、 点$Q$から$AP$にひいた垂線と$AP$との交点を$R$とする。次の(1)~(4)に答えなさい。

(1) $AQ$の長さを求めなさい。

(2) $△APQ$の面積を求めなさい。

(3) $QR$の長さを求めなさい。

(4) 三角すい$RBCD$の体積は、正四面体$ABCD$の体積の何倍か、求めなさい
単元: #数学(中学生)#中1数学#中3数学#空間図形#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問2
右の図の正四面体は、1辺の長さが8cmである。辺$BC$、$CD$の中点をそれぞれ点$P$、Q、 点$Q$から$AP$にひいた垂線と$AP$との交点を$R$とする。次の(1)~(4)に答えなさい。

(1) $AQ$の長さを求めなさい。

(2) $△APQ$の面積を求めなさい。

(3) $QR$の長さを求めなさい。

(4) 三角すい$RBCD$の体積は、正四面体$ABCD$の体積の何倍か、求めなさい
投稿日:2019.01.19

<関連動画>

高等学校入学試験予想問題:鳥取県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#平面図形#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 10xy^2\div(-5y)\times 3x$
(2)$ 2x-y-\dfrac{5x+y}{3}$
(3)$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=2 \\
x+2y=8
\end{array}
\right.
\end{eqnarray}$
$ x=?,y=? $

(4)$ 2x^2+3x-1=0 $
$ x=? $

$ \boxed{2}$

$\dfrac{3a-5}{2}=b ・・・・①$
$ 3a-5=2b・・・・②$
$ 3a=2b+5・・・・③$
$ a=\dfrac{2b+5}{3}・・・・④$
「等式の両辺に同じ数を足しても等式が成り立つ」に導く式変形か?

$\boxed{3}$

$ AD\parallel BC,BC=2AD,AD \lt CD,\angle ADC=90°$
$ 台形ABCD,\angle CAE=90°$である.
①$ \triangle ACD \backsim \triangle ECA $の証明をせよ.
②(1)$ DE=? $
(2)$ \triangle EHD=?$
(3)$ FH:GH=?$
この動画を見る 

2023高校入試数学解説88問目 直方体と内接球 埼玉県学校選択問題(改)

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△IPQと球は接している
球の半径=2
x=?
*図は動画内参照

2023埼玉県(改)ラスボス
この動画を見る 

忘れ物の問題の裏技

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
弟が5km離れた学校に向かって家を出た。
弟の忘れ物に気づいた兄は、その8分後に家を出て、弟を追いかけた。
弟は50m/分、兄は70m/分だったとき、兄は家を出て何分後に弟に追いつくか求めよ
この動画を見る 

【受験対策】  数学-関数④

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y=\displaystyle \frac{24}{x}$とそのグラフ上の点Aがある。
直線又は点Aを通る傾きが3の直線で、 関数$y=\displaystyle \frac{24}{x}$とのもう一つの交点をBとします。
点Aのx座標が2のとき、次の問いに答えよう。

①点Aの座標は?

②点Bの座標は?

③△OABの面積は?
※図は動画内参照
この動画を見る 

約分の裏技・テクニック~意外と知らない~

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数学(中学生)#中1数学#中2数学#中3数学#約数・倍数を利用する問題#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2つの数字の公約数は、2つの数字の差の約数になる次の分数を約分せよ。
(1)$\displaystyle \frac{51}{68}$
(2)$\displaystyle \frac{10}{35}$
(3)$\displaystyle \frac{161}{115}$
(4)$\displaystyle \frac{5080}{5207}$
この動画を見る 
PAGE TOP