気づけば一瞬!!! - 質問解決D.B.(データベース)

気づけば一瞬!!!

問題文全文(内容文):
x=?
*図は動画内参照

川端高校
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照

川端高校
投稿日:2022.04.22

<関連動画>

【高校受験対策/数学】死守57

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57

①$6\times (-3)$を計算しなさい。

②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。

③$a^2b×21b \div 7a$を計算しなさい。

④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。

⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。

⑥二次方程式$x^2+5x+5=0$を解きなさい。

⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。

ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。

⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る 

【受験対策】数学-証明3

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平行と合同#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように,$\triangle ABC$の辺$BC$上に点$D$がある.
3点$A,B,D$を通る円と,辺$AC$との交点を$E$とするとき,
次の各問いに答えなさい.

①$\angle AEB=47°$のとき,$\angle ADC$の大きさを求めなさい.

②$AE=BD$のとき,$\triangle ACD\equiv \triangle BCE$を証明しなさい.

図は動画内参照
この動画を見る 

解けると気持ちいい!2通りで解説!!半円と長方形

アイキャッチ画像
単元: #数学(中学生)#平面図形#相似と相似を利用した問題#平面図形
指導講師: 数学を数楽に
この動画を見る 

【高校受験対策/数学】死守65

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(展開、因数分解)#2次方程式#比例・反比例#平行と合同#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守65

①右の図のように、直線$l$、直線$m$と2つの直線が交わっている。
$\angle a,\angle b,\angle c,\angle d,\angle e$のうち、どの角とどの角が等しければ、直線$l$と直線$m$が平行であるといえるか、その2つの角を答えなさい。

②$x^2-10x+25$を因数分解しなさい。

③2次方程式$(2x-5)^2=18$を解きなさい。

④右のア~オのうち、絶対値が最も大きい数を選び、記号で答えなさい。
ア $3.2$
イ $-\frac{7}{2}$
ウ $2\sqrt{2}$
エ $\frac{10}{3}$
オ $-3$

⑤右のア~オのうち、$y$が$x$に比例するものをすべて選び、記号で答えなさい。

ア 自然数$x$の約数の個数は$y$ 個である。
イ $x$ 円の商品を1000円支払って買うとき、おつりは$y$ 円である。
ウ 1200mの道のりを分速$x$ mの速さで進むとき、かかる時間は$y$ 分である。
エ 15%の食塩水が$x$ gあるとき、この食塩水に含まれる食塩の量は$y$ gである。
オ 何も入っていない容器に水を毎分2Lずつ$x$ 分間入れるとき、たまる水の量は$y$ Lである。

⑥右のア~オのうち、関数$y=2x^2$ついて述べた文として正しいものをすべて選び、記号で答えなさい。

ア この関数のグラフは、原点を通る。
イ $x \gt 0$のとき、$x$が増加すると$y$は減少する。
ウ この関数のグラフは$x$ 軸について対称である。
エ $x$の変域が$-1 \leqq x \leqq 2$のとき、$y$の変域は$0 \leqq y \leqq 8$である。
オ $x$の値がどの値からどの値まで増加するかに関わらず、変化の割合は常に2である。
この動画を見る 

【高校受験対策/数学】死守-91

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#平方根#比例・反比例#空間図形#2次関数#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守91

①$-7+9$を計算しなさい。

②$\frac{15}{2}×(-\frac{4}{5})$を計算しなさい。

③$3(2x-y)+4(x+3y)$を 計算しなさい。

④$y$は$x$に反比例し、$x=3$のとき$y=2$である。
$y$を$x$の式で表しなさい。

⑤14の平方根うち、正数の数であるものを答えなさい。

⑥底面が1辺$6cm$の正方形で、体積が$96cm^3$である四角すいの高さを求めなさい。

⑦2つの整数$m,n$について、計算の結果がいつも整数になるとは限らないものを、
次のア~エから1つ選び、記号で答えなさい。

ア $m+n$
イ $m-n$
ウ $m×n$
エ $m÷n$

⑧関数$y=-\frac{3}{4}x^2$について、
次のア~エのうち、正しいものを2つ選び記号で 答えなさい。

ア 変化の割合は一定ではない。
イ $x$の値がどのように変化しても、その値が増加することはない。
ウ $x$がどのような値でも、$y$の値は負の数である。
エ グラフの開き方は関数$y=x^2$のグラフより大きい。
この動画を見る 
PAGE TOP