【中学数学】連立方程式:連立方程式文章題の発展問題 - 質問解決D.B.(データベース)

【中学数学】連立方程式:連立方程式文章題の発展問題

問題文全文(内容文):
ある2桁の自然数がある。
その自然数は1の位の4倍の数より22大きく、10の位と1の位を入れ替えてできる数は元の自然数より18大きい。
元の自然数はいくつか。【連立方程式】
チャプター:

0:00 オープニング
0:07 問題文
0:21 本編
3:45 エンディング

単元: #数学(中学生)#中2数学#連立方程式
教材: #KEYワーク#KEYワーク(数学)中2#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある2桁の自然数がある。
その自然数は1の位の4倍の数より22大きく、10の位と1の位を入れ替えてできる数は元の自然数より18大きい。
元の自然数はいくつか。【連立方程式】
投稿日:2021.08.07

<関連動画>

福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値

アイキャッチ画像
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
この動画を見る 

角度を求める A 都立西 2021

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは平行四辺形
$\angle EIF = ?$
*図は動画内参照

2021東京都立西高等学校
この動画を見る 

気付けば爽快!!ルートの入った連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x - y = 51 \\
\sqrt x + \sqrt y = 17

\end{array}
\right.
\end{eqnarray}
この動画を見る 

高等学校入学試験問題予想:岐阜県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#平行と合同#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$4+10\div(-2)$を計算せよ.
(2)$2(4x-y)-(7x-5y)$を計算せよ.
(3)$6ab\div 2a\times b$を計算せよ.
(4)次の数を大きい順に左から並べなさい.
$2\sqrt2,\sqrt7,3$

$\boxed{2}$
(1)$\angle GHF=?$
(2)$\triangle GHF \backsim \triangle FDE$の証明
(3)$AG=3cm,GF=5cm$のとき,$HF=?,AB=?,\triangle FDE=?$

岐阜県立高校過去問
この動画を見る 

福田のおもしろ数学508〜1分チャレンジ!連立方程式

アイキャッチ画像
単元: #連立方程式
指導講師: 福田次郎
問題文全文(内容文):

$2024(x-y)+2025(y-z)+2026(z-x)=0$

$2024^2(x-y)+2025^2(y-z)+2026^2(z-x)=2025$

のとき、

$z-y$の値を求めて下さい。
    
この動画を見る 
PAGE TOP