【難化】共通テスト数学1A講評 - 質問解決D.B.(データベース)

【難化】共通テスト数学1A講評

問題文全文(内容文):
あきとんとんさんが共通テスト数学ⅠAの講評をします。

傾向を知って、対策に役立てましょう!
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
あきとんとんさんが共通テスト数学ⅠAの講評をします。

傾向を知って、対策に役立てましょう!
投稿日:2021.01.18

<関連動画>

【共通テスト】数学1A2024年レビュー・総評・傾向まとめ

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、
後のように話している。

太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした
垂線とその水平面との交点のことだよ。
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、
三角比の表を用いて調べたら16°だったよ。
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい
のかな?

図1の$\theta$はちょうど16°であったとする。しかし、図1の縮尺は、水平方向が$\frac{1}{100000}$
であるのに対して鉛直方向は$\frac{1}{25000}$であった。
実際にキャンプ場の地点Aから山頂Bを見上げる角である$\angle BAC$を考えると、
$\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }$である。

したがって、$\angle BAC$の大きさは$\boxed{セ}$、ただし、目の高さは無視して考えるものとする。

$\boxed{セ}$の解答群
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である
⑨64°より大きく65°より小さい

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[2]a,bは正の実数であり、$a\neq 1,b\neq 1$を満たすとする。太郎さんは
$\log_ab$と$\log_ba$の大小関係を調べることにした。
(1)太郎さんは次のような考察をした。
まず、$\log_39=\boxed{\ \ ス\ \ }, \log_93=\frac{1}{\boxed{\ \ ス\ \ }}$である、この場合

$\log_39 \gt \log_93$
が成り立つ。
一方、$\log_{\frac{1}{4}}\boxed{\ \ セ\ \ }=-\frac{3}{2},\log_{\boxed{セ}}\frac{1}{4}=-\frac{2}{3}$である。この場合

$\log_{\frac{1}{4}}\boxed{\ \ セ\ \ } \lt \log_{\boxed{セ}}\frac{1}{4}$
が成り立つ。
(2)ここで
$\log_ab=t \ldots①$
とおく。
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、
それが正しいことを確かめることにした。
$\log_ba=\frac{1}{t} \ldots②$
①により、$\boxed{\ \ ソ\ \ }$である。このことにより$\boxed{\ \ タ\ \ }$が得られ、②が
成り立つことが確かめられる。

$\boxed{\ \ ソ\ \ }$の解答群
$⓪a^k=t ①a^t=b ②b^a=t$
$③b^t=a ④t^a=b ⑤t^b=a$

$\boxed{\ \ タ\ \ }$の解答群
$⓪a=t^{\frac{1}{b}} ①a=b^{\frac{1}{t}} ②b=t^{\frac{1}{a}}$
$③b=a^{\frac{1}{t}} ④t=b^{\frac{1}{a}} ⑤t=a^{\frac{1}{b}}$

(3)次に、太郎さんは(2)の考察をもとにして
$t \gt \frac{1}{t} \ldots③$
を満たす実数$t(t\neq 0)$の値の範囲を求めた。
太郎さんの考察
$t \gt 0$ならば、③の両辺にtを掛けることにより、$t^2 \gt 1$を得る。
このような$t(t \gt 0)$の値の範囲は$1 \lt t$である。
$t \lt 0$ならば、③の両辺にtを掛けることにより、$t^2 \lt 1$を得る。
このような$t(t \lt 0)$の値の範囲は$-1 \lt t \lt 0$である。

この考察により、③を満たす$t(t\neq 0)$の値の範囲は
$-1 \lt t \lt 0, 1 \lt t$
であることが分かる。
ここで、aの値を一つ定めたとき、不等式
$\log_ab \gt \log_ba \ldots④$
を満たす実数$b(b \gt 0, b\neq 1)$の値の範囲について考える。
④を満たすbの値の範囲は$a \gt 1$のときは$\boxed{\ \ チ\ \ }$であり、
$0 \lt a \lt 1$のときは$\boxed{\ \ ツ\ \ }$である。

$\boxed{\ \ チ\ \ }$の解答群
$⓪0 \lt b \lt \frac{1}{a}, 1 \lt b \lt a   ①0 \lt b \lt \frac{1}{a}, a \lt b$
$②\frac{1}{a} \lt b \lt 1, 1 \lt b \lt a   ③\frac{1}{a} \lt b \lt 1, a \lt b$

$\boxed{\ \ ツ\ \ }$の解答群
$⓪0 \lt b \lt a, 1 \lt b \lt \frac{1}{a}   ①0 \lt b \lt a, \frac{1}{a} \lt b$
$②a \lt b \lt 1, 1 \lt b \lt \frac{1}{a}   ③a \lt b \lt 1, \frac{1}{a} \lt b$

(4)$p=\frac{12}{13}, q=\frac{12}{11}, r=\frac{14}{13}$とする。
次の⓪~③のうち、正しいものは$\boxed{\ \ テ\ \ }$である。

$\boxed{\ \ テ\ \ }$の解答群
$⓪\log_pq \gt \log_qp$かつ$\log_pr \gt \log_rp$
$①\log_pq \gt \log_qp$かつ$\log_pr \lt \log_rp$
$②\log_pq \lt \log_qp$かつ$\log_pr \gt \log_rp$
$③\log_pq \lt \log_qp$かつ$\log_pr \lt \log_rp$

2022共通テスト数学過去問
この動画を見る 

【残り9日】共テ数学IAの全大問解説、まとめました【流し見OK】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学IAの全大問解説、まとめ動画です
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題3。確率分布、統計の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B($400,0,\boxed{\ \ アイ\ \ }$)に従うから、Zの平均(期待値)は$\boxed{\ \ ウエオ\ \ }$である。

(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
$R=\frac{Z}{400}$とする。このとき、Rの標準偏差は$\sigma(R)=\boxed{\ \ カ\ \ }$である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
$N(0,\boxed{\ \ アイ\ \ },(\boxed{\ \ カ\ \ })^2)$に従う。
したがって、$P(R \geqq x)=0.0465$となるようなxの値は$\boxed{\ \ キ\ \ }$となる。
ただし、$\boxed{\ \ キ\ \ }$の計算においては$\sqrt3=1.73$とする。

$\boxed{\ \ カ\ \ }$の解答群
⓪$\frac{3}{6400}$  ①$\frac{\sqrt3}{4}$  ②$\frac{\sqrt3}{80}$  ③$\frac{3}{40}$ 

$\boxed{\ \ キ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209   ①0.251   ②0.286   ③0.395

(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は$100 \leqq x \leqq 300$である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。

花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
$f(x)=ax+b (100 \leqq x \leqq 300)$
を考えることにした。ただし、$100 \leqq x \leqq 300$の範囲で$f(x) \geqq 0$とする。
このとき、$P(100 \leqq X \leqq 300)=\boxed{\ \ ク\ \ }$であることから

$\boxed{\ \ ケ\ \ }・10^4a+\boxed{\ \ コ\ \ }・10^2b=\boxed{\ \ ク\ \ } \ldots①$
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が$100 \leqq x \leqq 300$で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
$m=\int_{100}^{300}xf(x)dx$
で定義される。この定義と花子さんの採用した方法から
$m=\frac{26}{3}・10^5a+4・10^4b=180 \ldots②$
となる。①と②により、確率密度関数は
$f(x)=-\ \boxed{\ \ サ\ \ }・10^{-5}x+\boxed{\ \ シス\ \ }・10^{-3} \ldots③$
と得られる。このようにして得られた③のf(x)は、$100 \leqq x \leqq 300$の範囲で
$f(x) \geqq 0$を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは$\boxed{\ \ セ\ \ }%$
あると見積もることができる。

$\boxed{\ \ セ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36

2022共通テスト数学過去問
この動画を見る 
PAGE TOP