【#4】【因数分解100問】基礎から応用まで!(31)〜(40)【解説付き】 - 質問解決D.B.(データベース)

【#4】【因数分解100問】基礎から応用まで!(31)〜(40)【解説付き】

問題文全文(内容文):
(31)$(x^2+5)(x+3)(x-3)$
(32)$(x^2+1)(x+1)(x-1)$
(33)$(a+2b)(a-2b)(2a+3b)(2a-3b)$
(34)$3b^2(3a+2bc)(3a-2bc)$
(35)$\dfrac{1}{4}(2a+b-c)(2a-b+c)$
(36)$(5x+3)(25x^2-15x+9)$
(37)$(2x-3y)(4x^2+6xy+9y^2)$
(38)$(x-2)(x+1)(x-3)(x+2)$
(39)$(x+1)(x+3)(x+2)^2$
(40)$(x-1)^2(x^2-2x-4)$
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(31)$(x^2+5)(x+3)(x-3)$
(32)$(x^2+1)(x+1)(x-1)$
(33)$(a+2b)(a-2b)(2a+3b)(2a-3b)$
(34)$3b^2(3a+2bc)(3a-2bc)$
(35)$\dfrac{1}{4}(2a+b-c)(2a-b+c)$
(36)$(5x+3)(25x^2-15x+9)$
(37)$(2x-3y)(4x^2+6xy+9y^2)$
(38)$(x-2)(x+1)(x-3)(x+2)$
(39)$(x+1)(x+3)(x+2)^2$
(40)$(x-1)^2(x^2-2x-4)$
投稿日:2022.04.04

<関連動画>

【高校受験対策】数学-死守5

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$1-7$

②$(-3)^2\times 2-5\times 3$

③$\dfrac{2}{3}-\dfrac{7}{10}\div \left(-\dfrac{7}{15}\right)$

④$2(x+3y)-(2x-y)$

⑤$\sqrt8+\sqrt6\times \sqrt3$

2,つぎの各問に答えなさい.

⑥$x^2+5x$を因数分解しなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-3y=-1 \\
x+6y=13
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧2次方程式$3^2-5x+1=0$を解きなさい.

⑨$3a+b=10$を$a$について解きなさい.

⑩$15:(x-2)=3:2$であるとき,
$x$の値を求めなさい.
この動画を見る 

因数分解:日本大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#日本大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 日本大学第二高等学校

$(x^2+3)^2-16x^2$
を因数分解せよ。
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

和と積から2数を求める 神戸国際大附属(改)

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
和が48、積が567となる2つの数を求めよ。

神戸国際大学附属高等学校(改)
この動画を見る 

【中学数学】分数の割り算・多項式の計算~計算ミスをなくす方法~ 1-2【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(12a^2-6a)\div \displaystyle \frac{2}{3}$

2⃣
$(\displaystyle \frac{2}{3}x^2y^2-\displaystyle \frac{4}{9}xy^2+2xy)\div(-\displaystyle \frac{2}{9}xy)$

3⃣
$(4x^3-6x^2+\displaystyle \frac{8}{5}x)\div(-\displaystyle \frac{4}{5}x)$

4⃣
$(-8a^2b+16ab)\div \displaystyle \frac{4}{5}a$

5⃣
$(4ab^2+5abc+\displaystyle \frac{1}{2})\div(\displaystyle \frac{7b}{5a})$
この動画を見る 
PAGE TOP