福田のおもしろ数学451〜最小公倍数の性質 - 質問解決D.B.(データベース)

福田のおもしろ数学451〜最小公倍数の性質

問題文全文(内容文):
$Icm(a,b,c)$は$a,b,c$の最小公倍数を表す。

$Icm(a,b,c)=Icm(Icm(a,b),c)$

$ \hspace{ 50pt } =Icm(a,Icm(b,c))$

を証明して下さい。
   
単元: #計算と数の性質#数の性質その他#約数・倍数を利用する問題#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$Icm(a,b,c)$は$a,b,c$の最小公倍数を表す。

$Icm(a,b,c)=Icm(Icm(a,b),c)$

$ \hspace{ 50pt } =Icm(a,Icm(b,c))$

を証明して下さい。
   
投稿日:2025.03.28

<関連動画>

中学受験算数「日暦算①」小学4年生~6年生対象【毎日配信】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
第4回日曆算

例1
ある年の4月11日は火曜日です。 この年の6月14日は何曜日ですか。

例2
3月15日から150日後は何月何日ですか。

例3
6月23日から数えて100日目は 何月何日ですか。
この動画を見る 

2025年女子学院中入試算数大問① 中学受験指導歴20年プロ塾講師のじっくり解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#平面図形#平面図形その他#立体図形#立体図形その他
指導講師: 重吉
問題文全文(内容文):
(1)▭にあてはまる数を求めなさい。

\[
8\frac{7}{10} + \left\{ \left( \Box + \frac{1}{4} \right) \times 4.375 + \frac{7}{12} \right\} \div \left( \frac{1}{6} + \frac{1}{9} \right) = 20.25
\]

(2) 図1のように、正五角形の中に線を引きました。角アの大きさは何度ですか。
図2のように、ひし形ABCDの頂点Dが辺AB上の点Eに重なるように折り返しました。角イの大きさは何度ですか。
図3のように、2つの三角形を直線上に置きました。同じ印のついているところは同じ長さです。角ウの大きさは何度ですか。
(図は動画内参照)

(3) 異なる整数が5つあり、5つの整数の和は130です。小さい順に3つ足すと和は59で、 大きい順に3つ足すと和は93です。また、最も大きい整数と最も小さい整数の和は55です。
① 3番目に小さい整数はいくつですか。
② 最も大きい整数として考えられるものをすべて答えなさい。

(4) 同じ大きさの立方体をいくつか積み上げた立体があります。
図は、この立体を正面と真上から見たところです。
積み上げた立方体の個数は、最も少ない場合何個ですか。
また、最も多い場合何個ですか。
(図は動画内参照)

(5) 図のように、面積が18cm²の正六角形をすき間なくしきつめました。
3つの点A, B, Cを結んでできる三角形の面積は何cm²ですか。
(図は動画内参照)

この動画を見る 

2024年栄東中(A)算数大問②、③中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#約数・倍数を利用する問題#速さ#速さその他
指導講師: 重吉
問題文全文(内容文):
マラソン大会で栄くん、東さん、中さんの3人が同時にスタートして走り出し、栄くん、東さん、中さんの順にゴールしました。図1は3人がスタートしてからの時間と栄くんと東さんの道のりの差、東さんと中さんの道のりの差を表したものです。このとき、次の問いに答えなさい。ただし、3人は一定の速さで走るものとします。
※図は動画内参照
(1)栄くんと中さんの走る速さの比を最も簡単な整数の比で表しなさい。
(2)マラソン大会のコースは全長何mありますか。
(3)東さんがゴールするのはスタートしてから何分何秒後になりますか。

1つの整数に対し、ある規則にしたがって約数を配置した図形をつくります。約数を配置した点を頂点と呼ぶことにします。例えば、4に対しては4=2×2だから、図1のような頂点の個数が3個の直線がつくれます。18に対しては、18=2×3×3だから、図2のような頂点の個数が6個の長方形がつくれます。90に対しては、90=2×3×3×5だから、図3のような頂点の個数が12個の直方体がつくれます。このとき、次の問いに答えなさい。
(1)図1のアに入る数を答えなさい。
(2)2024に対してつくれる図形の頂点の個数は全部で何個になりますか。
(3)ある整数に対し頂点の個数が8個になる図形がつくれるとき、その整数として考えられる150以下の数は全部で何通りありますか。
※図は動画内参照
この動画を見る 

中学受験算数「規則を見つける⑦(パスカルの三角形①)」小学4年生~6年生対象【毎日配信】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
第39回規則を見つける⑦ (パスカルの三角形①)

例題
次のように、ある規則にしたがって数か並んでいます。

(1)7段目に並ぶ数の中で、最も大きい数は いくつですか。

( 2)52段目の右から3番目の数はいくつですか。

(3)1段目から9段目までの数をすべてたすと、 いくつになりますか。
この動画を見る 

2024年吉祥女子中算数大問①(5)~(7)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#約数・倍数を利用する問題#過去問解説(学校別)#平面図形#角度と面積#相似と相似を利用した問題#吉祥女子中学
指導講師: 重吉
問題文全文(内容文):
(5)
下の図の4本の直線AE,BF,CG,DHはすべて平行です。
AB:BC:CD=3:2:4, BF:CG=5:6のとき、AE:DHwp最も簡単な整数の比で答えなさい。
※図は動画内参照図

(6)
整数Aがあり、283をAで割った余りは、356をAで割った余りよりも4だけ小さく、463をAで割った余りより4だけ大きいです。整数Aを答えなさい。

(7)
下の図の三角形ABCと三角形ADEは正三角形です。正三角形ABCの一辺の長さは12 cmで、BDの長さは4 cmです。三角形ADFの面積は正三角形ABCの面積の何倍ですか。
※図は動画内参照図
この動画を見る 
PAGE TOP