【数C】空間ベクトル:平面の方程式の求め方(②平面の方程式の一般形を用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。 - 質問解決D.B.(データベース)

【数C】空間ベクトル:平面の方程式の求め方(②平面の方程式の一般形を用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。

問題文全文(内容文):
3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
投稿日:2020.11.29

<関連動画>

福田の数学〜中央大学2021年経済学部第1問(4)〜2つのベクトルに垂直な単位ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\ 2つのベクトル\ \overrightarrow{ a }=(4,\ -2,\ 3),\ \overrightarrow{ b }=(-4,\ 5,\ -3)の両方に垂直な\\
単位ベクトルを全て求めよ。
\end{eqnarray}

2021中央大経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

【数C】ベクトルの基本㉑空間における平面上の点を平面の方程式から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 

【平面の方程式の基礎】平面の方程式は直線の方程式と同じように理解できます〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
平面の方程式について解説します。
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ aを1以上の実数とし、AB=BC=CA=1およびAD=BD=CD=a\\
を満たす四面体ABCDを考える。このとき、\cos\angle BAD=\boxed{\ \ ア\ \ }である。\\
また、ADの中点をEとしたとき、\overrightarrow{ EB }を\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }を用いて表すと\\
\overrightarrow{ EB }=\boxed{\ \ イ\ \ }\ となるので、|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }\ で、\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }\\
である。よって、a=1のとき、\cos\angle BEC=\boxed{\ \ オ\ \ }であり、\\
\angle BEC=60°となるのはa=\boxed{\ \ カ\ \ }\ のときである。
\end{eqnarray}

2022慶応義塾大学看護医療学科過去問
この動画を見る 
PAGE TOP