福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質

問題文全文(内容文):
座標平面上の四角形ABCDは以下の条件を満たすとする。
$(\textrm{a})$頂点Aの座標は(-1,-1)である。
$(\textrm{b})$四角形の各辺は原点を中心とする半径1の円と接する。
$(\textrm{c})$$\angle BCD$は直角である。
また、辺ABの長さをlとし、$\angle ABC=\theta$とする。

(1)$\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}$である。

(2)辺CDの長さが$\frac{5}{3}$であるとき、$l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(3)$\theta$は鋭角とする。四角形ABCDの面積が6であるとき、$l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}$ ,

$\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}$である。

2022慶應義塾大学経済学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の四角形ABCDは以下の条件を満たすとする。
$(\textrm{a})$頂点Aの座標は(-1,-1)である。
$(\textrm{b})$四角形の各辺は原点を中心とする半径1の円と接する。
$(\textrm{c})$$\angle BCD$は直角である。
また、辺ABの長さをlとし、$\angle ABC=\theta$とする。

(1)$\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}$である。

(2)辺CDの長さが$\frac{5}{3}$であるとき、$l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(3)$\theta$は鋭角とする。四角形ABCDの面積が6であるとき、$l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}$ ,

$\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}$である。

2022慶應義塾大学経済学部過去問
投稿日:2022.06.20

<関連動画>

【数Ⅰ】図形と計量:三角比の表①30°45°60°から!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・sin30°, sin45°, sin60°の値を求めよ。
・cos30°, cos45°, cos60°の値を求めよ。
・tan30°, tan45°, tan60°の値を求めよ。
この動画を見る 

【高校受験対策】数学-死守20

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#数と式#比例・反比例#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#単位・比と割合・比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(-2)+11$を計算しなさい.

②$(- 4) ^ 2 \times (- 3)$を計算しなさい.

③$(6a - 15b) \div 3$を計算しなさい.

④$(2x - 1)(x + 3)$を展開しなさい.

⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.

⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.

⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.

⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.

ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$

⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.

(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.

(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.

⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,

(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.

(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」

図は動画内参照
この動画を見る 

京大の三角比!気づければ簡単!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\alpha,\beta$が$a>0°,\beta>0°,\alpha+\beta<180°$かつ$sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$sin\alpha+sin\beta$の取りうる範囲を求めよ。

京都大過去問
この動画を見る 

円と三角形の面積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径=1
△ABC=?
*図は動画内参照

この動画を見る 

sinとcosの関係

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
sinとcosの関係
*図は動画内参照
この動画を見る 
PAGE TOP