【数検2級】数学検定2級2次 問題3 - 質問解決D.B.(データベース)

【数検2級】数学検定2級2次 問題3

問題文全文(内容文):
問題3.(選択)
 xy平面上において、点Pが円$x^2+y^2=4$上を動くとき、点A(3,1)と点Pを結ぶ線分APの中点Qの軌跡を求めなさい。
チャプター:

0:00 問題3について
0:34 解説
1:44 解き方の手順
4:56 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3.(選択)
 xy平面上において、点Pが円$x^2+y^2=4$上を動くとき、点A(3,1)と点Pを結ぶ線分APの中点Qの軌跡を求めなさい。
投稿日:2023.02.18

<関連動画>

#数検準1級1次#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} (\displaystyle \frac{x^2}{2}+3x)e^{\frac{x}{2}}dx$

出典:
この動画を見る 

重積分⑨-4【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

$\iint_D\ (1+x^2+y^2)^{-\frac{5}{2}}dx\ dy $
$D:x\geqq 0,y \geqq 0$とする.
この動画を見る 

重積分⑧-2【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_D(x+y)dxdy$
$D : 0 \leqq y+2x \leqq 2 $,
$0 \leqq y-2x \leqq 2$
*図は動画内参照


この動画を見る 

数検Ⅰ級レベル 東工大9割男 栗崎

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定1級#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
極限値
$\displaystyle \lim_{ x \to \infty }${$\sqrt{ x^2+3x-1 }- \sqrt[ 3 ]{ x^3+x^2-1 }$}
この動画を見る 

#57数検準1級1次「ほぼ1本道」 #極限

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$

出典:数検準1級1次
この動画を見る 
PAGE TOP