【共通テスト】第2問_データの分析は20分でマスターする!【数学IA】 - 質問解決D.B.(データベース)

【共通テスト】第2問_データの分析は20分でマスターする!【数学IA】

問題文全文(内容文):
【数学IA】第2問 データの分析の解説動画です
単元: #センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IA】第2問 データの分析の解説動画です
投稿日:2020.12.30

<関連動画>

【日本最速解答速報】共通テスト2023数学2B 第2問・第4問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

【共通テスト】数学IA_第4問(整数)時間を稼ぐ解答法

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA_第4問(整数)解説動画です
この動画を見る 

2024年共通テスト数学1A講評【予想平均点・傾向と対策】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
上岡先生が2024年共通テスト数学1Aを講評します。

復習の際の参考にしましょう!
この動画を見る 

【篠原共通塾】2021年度「数学2B」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2021年度共通テスト「数学2B」の解説動画です。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]二つの関数$f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2}$について考える。
(1)$f(0)=\boxed{セ}, g(0)=\boxed{ソ}$である。また、$f(x)$は
相加平均と相乗平均の関係から、$x=\boxed{タ}$で最小値$\boxed{チ}$をとる。
$g(x)=-2$となるxの値は$\log_2(\sqrt{\boxed{ツ}}-\boxed{テ})$である。

(2)次の①~④は、xにどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{ト} \ldots①  g(-x)=\boxed{ナ} \ldots②$
$\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{ニ} \ldots③$  
$g(2x)=\boxed{ヌ}\ f(x)g(x) \ldots④$

$\boxed{ト}、\boxed{ナ}$の解答群
⓪$f(x)$    ①$-f(x)$    ②$g(x)$    ③$-g(x)$

(3)花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式$(\textrm{A})~(\textrm{D})$を考えてみたけど、常に
成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式$(\textrm{A})~(\textrm{D})$の$\beta$に
何か具体的な値を代入して調べてみたら?

太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})$
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})$

(1),(2)で示されたことのいくつかを利用すると、式$(\textrm{A})~(\textrm{D})$のうち、
$\boxed{ネ}$以外の3つは成り立たないことが分かる。$\boxed{ネ}$は左辺と右辺を
それぞれ計算することによって成り立つことが確かめられる。

$\boxed{ネ}$の解答群
⓪$(\textrm{A})$   ①$(\textrm{B})$   ②$(\textrm{C})$   ③$(\textrm{D})$

2021共通テスト数学過去問
この動画を見る 
PAGE TOP