【共通テスト】第2問_データの分析は20分でマスターする!【数学IA】 - 質問解決D.B.(データベース)

【共通テスト】第2問_データの分析は20分でマスターする!【数学IA】

問題文全文(内容文):
【数学IA】第2問 データの分析の解説動画です
単元: #センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IA】第2問 データの分析の解説動画です
投稿日:2020.12.30

<関連動画>

共通一次 三角関数 数学

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
sinθ+cosθ=sinθcosθであれば
sinθcosθ=[ ][ ]+[ ]

(2)
f(x)=cos2x5sinx3の最大値とそのときのxの値(0x2π)

出典:共通一次試験 過去問
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第2問〜データの分析

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2
[1] 花子さんと太郎さんのクラスでは、文化祭でたこ焼き店を出店することになった。
二人は1皿当たりの価格をいくらにするかを検討している。次の表は、過去の文化祭で
のたこ焼き店の売り上げデータから、1皿あたりの価格と売り上げ数の関係を
まとめたものである。

1()200250300()200150100

(1)まず、二人は、上の表から、1皿あたりの価格が50円上がると売り上げ数が
50皿減ると考えて、売り上げ数が1皿あたりの価格の1次関数で表される
と仮定した。このとき、1皿あたりの価格をx円とおくと、売り上げ数は
    x 

と表される。

(2)次に、二人は、利益の求め方について考えた。
花子:利益は、売り上げ金額から必要な経費を引けば求められるよ。
太郎:売上金額は、1皿あたりの価格と売り上げ数の積で求まるね。
花子:必要な経費は、たこ焼き用器具の賃貸料と材料費の合計だね。
材料費は、売り上げ数と1皿あたりの材料費の積になるね。

二人は、次の三つの条件のもとで、1皿あたりの価格xを用いて
利益を表すことにした。

(条件1) 1皿あたりの価格がx円のときの売り上げ数として①を用いる。
(条件2) 材料は、①により得られる売り上げ数に必要な分量だけ仕入れる。
(条件3) 1皿あたりの材料費は160円である。たこ焼き用器具の賃貸料は
6000円である。材料費とたこ焼き用器具の賃貸料以外の経費はない。

利益はy円とおく。yxの式で表すと
y=x2+    x    ×10000 
である。

(3)太郎さんは利益を最大にしたいと考えた。②を用いて考えると、利益
が最大になるのは1個あたりの価格が    円のときであり、
そのときの利益は    円である。

(4)花子さんは、利益を7500円以上となるようにしつつ、できるだけ安い
価格で提供したいと考えた。②を用いて考えると、利益が7500円以上となる
1皿あたりの価格のうち、最も安い価格は    円となる。

[2] 総務省が実施している国勢調査では都道府県ごとの総人口が調べられており、
その内訳として日本人人口と外国人人口が公表されている。また、外務省では旅券
(パスポート)を取得した人数を都道府県ごとに公表している。加えて
文部科学省では都道府県ごとの小学校に在籍する児童数を公表している。
そこで、47都道府県の、人口1万人あたりの外国人人口(以下、外国人数)、
人口1万人当たりの小学校児童数(以下、小学生数)、また、日本人1万人あたり
の旅券を取得した人数(以下、旅券取得者数)を、それぞれ計算した。
次の(I),(II),(III)は図1(動画参照)の散布図に関する記述
である。

(I)小学生数の四分位範囲は、外国人数の四分位範囲より大きい。
(II)旅券取得者数の範囲は、外国人数の範囲より大きい。
(III)旅券取得者数と小学生数の相関係数は、旅券取得者数と外国人数
の相関係数より大きい。

(I),(II),(III)の正誤の組み合わせとして正しいものは    である。
(    の解答群は動画参照)


(2)一般に、度数分布表
x1x2x3x4xkf1f2f3f4fkn

が与えられていて、各階級に含まれるデータの値がすべてその階級値に
等しいと仮定すると、平均値x¯
x¯=1n(x1f1+x2f2+x3f3+x4f4++xkfk)

で求めることができる。さらに階級の幅が一定で、その値がhのときは
x2=x1+h, x3=x1+2h, x4=x1+3h, , xk=x1+(k1)h
に注意すると
x¯=    
と変形できる。

    については、最も適当なものを、次の⓪~④のうちから一つ
選べ。
x1n(f1+f2+f3+f4++fk)
hn(f1+2f2+3f3+4f4++kfk)
x1+hn(f2+f3+f4++fk)
x1+hn(f2+2f3+3f4++(k1)fk)
12(f1+fk)x112(f1+kfk)

図2は、2008年における47都道府県の旅券取得者数のヒストグラムである。
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を
含まない。

図2(※動画参照)のヒストグラムに関して、各階級に含まれるデータの値が
すべてその階級値に等しいと仮定する。このとき、平均値x¯は小数第1位を
四捨五入すると    である。

(3)一般に、度数分布表
x1x2x3x4xkf1f2f3f4fkn

が与えられていて、各階級に含まれるデータの値が全てその階級値に
等しいと仮定すると、分散s2
s2=1n{(x1x¯)2f1+(x2x¯)2f2++(xkx¯)2fk}
で求めることができる。さらにs^2は
s2=1n{(x12f1+x22f2++xk2fk)2x¯×    +(x¯)2×    }

と変形できるので
s2=1n(x12f1+x22f2++xk2fk)     
である。
        の解答群(同じものを繰り返し選んでもよい)
n
n2
x¯
nx¯
2nx¯
n2x¯
(x¯)2
n(x¯)2
2n(x¯)2
3n(x¯)2

図3(※動画参照)は図2を再掲したヒストグラムである。


図3のヒストグラムに関して、各階級に含まれるデータの値が全て
その階級値に等しいと仮定すると、平均値x¯は(2)で求めた    
である。    の値と式①を用いると、分散s2    である。

    については、最も近いものを、次の⓪~⑦のうちから一つ選べ。
3900 ①4900 ②5900 ③6900
7900 ⑤8900 ⑥9900 ⑦10900

2021共通テスト過去問
この動画を見る 

【満点続出】篠原塾の塾生の結果報告【共通テスト2023】

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#その他#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テスト2023の塾生の結果を報告動画です
この動画を見る 

2024共通テスト数学 あけましておめでとう

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数lを3進数と4進数で表したら下3桁が共に012になった
最小のlを求めよ
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
[1] a,bを定数とするとき、xについての不等式
|axb7|<3 
を考える。
(1)a=3,b=2とする。①を満たす整数全体の集合をPとする。
この集合Pを、要素を書き並べて表すと
P={    ,     }
となる。ただし、    ,     の解答の順序は問わない。

(2)a=12とする。
(i)b=1のとき、①を満たす整数は全部で    個である。
(ii)①を満たす整数が全部で(    +1)個であるような正の整数b
のうち、最小のものは    である。

[2]平面上に2点A,Bがあり、AB=8である。直線AB上にない点Pをとり、
ABPをつくり、その外接円の半径をRとする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点P
をいろいろな位置に取った。
図1は、点Pをいろいろな位置にとったときのの外接円をかいたものである。

(1)太郎さんは、点Pのとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。

問題1:点Pをいろいろな位置にとるとき、外接円の半径Rが最小となる
ABPはどのような三角形か。
正弦定理により、2R=    sinAPBである。よって、
Rが最小となるのはAPB=    °の三角形である。
このとき、R=    である。


(2)太郎さんは、図2(※動画参照)のように、問題1の点Pのとり方に
条件を付けて、次の問題2を考えた。

問題2:直線ABに平行な直線をlとし、直線l上で点Pをいろいろな
位置にとる。このとき、外接円の半径Rが最小となるABP
どのような三角形か。

太郎さんは、この問題を解決するために、次の構想を立てた。

問題2の解決の構想
問題1の考察から、線分ABを直径とする円をCとし、円Cに着目
する。直線lは、その位置によって、円Cと共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。

直線ABと直線lとの距離をhとする。直線lが円Cと共有点を
持つ場合は、h    のときであり、共有点をもたない場合は、
h>    のときである。

(i)h    のとき
直線lが円Cと共有点をもつので、Rが最小となるABPは、
h<    のとき    であり、h=    のとき直角二等辺三角形
である。

(ii)h>    のとき
線分ABの垂直二等分線をmとし、直線mと直線lとの交点をP1とする。
直線l上にあり点P1とは異なる点をP2とするときsinAP1B
sinAP2Bの大小を考える。
ABP2の外接円と直線mとの共有点のうち、直線ABに関して点P2
と同じ側にある点をP3とすると、AP3B    AP2Bである。
また、AP3B<AP1B<90°よりsinAP3B    AP1Bである。
このとき(ABP1の外接円の半径)    (ABP2の外接円の半径)
であり、Rが最小となるABP    である。

    ,     については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形

        の解答群(同じものを繰り返し選んでもよい。)
< ①= ②>

(3)問題2の考察を振り返って、h=8のとき、ABPの外接円の半径R
が最小である場合について考える。このとき、sinAPB=        
であり、R=    である。

2021共通テスト過去問
この動画を見る 
PAGE TOP preload imagepreload image