福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[2]。データの分析の問題。 - 質問解決D.B.(データベース)

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[2]。データの分析の問題。

問題文全文(内容文):
\begin{eqnarray}
[2] 日本国外における日本語教育の状況を調べるために、独立行政法人国際交流基金では\\
「海外日本教育機関調査」を実施しており、各国における教育機関数,教員数,学習数\\
が調べられている。2018年度において学習者数が5000人以上の国と地域(以下、国)\\
は29ヵ国であった。これら29ヵ国について、2009年度と2018年度のデータが得られている。\\
\\
\\
(1) 各国において、学習者数を教員数で割ることにより、国ごとの\\
「教員1人当たりの学習者数」を算出することができる。図1と図2(※動画参照)は、\\
2009年度および2018年度における「教員1人当たりの学習者数」のヒストグラム\\
である。これら二つのヒストグラムから、9年間の変化に関して、後のことが読み取れる。\\
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。\\
\\
\\
・2009年度と2018年度の中央値が含まれる階級の階級値を比較すると、\boxed{\ \ ケ\ \ }\\
・2009年度と2018年度の第1四分位数が含まれる階級の階級値を比較すると、\boxed{\ \ コ\ \ }\\
・2009年度と2018年度の第3四分位数が含まれる階級の階級値を比較すると、\boxed{\ \ サ\ \ }\\
・2009年度と2018年度の範囲を比較すると、\boxed{\ \ シ\ \ }。\\
・2009年度と2018年度の四分位範囲を比較すると、\boxed{\ \ ス\ \ }。\\
\\
\boxed{\ \ ケ\ \ }~\boxed{\ \ ス\ \ }を次の⓪~③のうちから一つ選べ。\\
⓪ 2018年度の方が小さい\\
① 2018年度の方が大きい\\
② 両者は等しい\\
③ これら二つのヒストグラムからだけでは両者の大小を判断できない\\
\\
\\
(2)各国において、学習者数を教育機関数で割ることにより、「教育機関1機関あたりの\\
学習者数」も算出した。図3(※動画参照)は、2009年度における\\
「教育機関1機関あたりの学習者数」の箱ひげ図である。\\
\\
2009年度について、「教育機関1機関あたりの学習者数」(横軸)と\\
「教員1人当たりの学習者数」(縦軸)の散布図は\boxed{\ \ セ\ \ }である。ここで、\\
2009年度における「教員1人当たりの学習者数」のヒストグラムである(1)の図1\\
を、図4(※動画参照)として再掲しておく。\\
\\
\boxed{\ \ セ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ選べ。\\
なお、これらの散布図には、完全に重なっている点はない。\\
(※選択肢は動画参照)\\
\\
(3) 各国における2018年度の学習者数を100としたときの2009年度の学習者数S,\\
および、各国における2018年度の教員数を100としたときの2009年度の\\
教員数Tを算出した。\\
例えば、学習者数について説明すると、ある国において、2009年度が44272人,\\
2018年度が174521人であった場合、2009年度の学習者数Sは\\
\frac{44272}{174521}×100 より25.4と算出される。\\
表1(※動画参照)はSとTについて、平均値、標準偏差および共分散を計算したものである。\\
ただし、SとTの共分散は、Sの偏差とTの偏差の積の平均値である。\\
表1の数値が四捨五入していない正確な値であるとして、SとTの相関係数\\
を求めると\boxed{\ \ ソ\ \ }, \boxed{\ \ タチ\ \ } である。\\
\\
(4) 表1と(3)で求めた相関係数を参考にすると、(3)で算出した2009年度の\\
S(横軸)とT(縦軸)の散布図は\boxed{\ \ ツ\ \ }である。\\
\\
\boxed{\ \ ツ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ\\
選べ。なお、これらの散布図には、完全に重なっている点はない。\\
(※選択肢は動画参照)
\end{eqnarray}

2022共通テスト数学過去問
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[2] 日本国外における日本語教育の状況を調べるために、独立行政法人国際交流基金では\\
「海外日本教育機関調査」を実施しており、各国における教育機関数,教員数,学習数\\
が調べられている。2018年度において学習者数が5000人以上の国と地域(以下、国)\\
は29ヵ国であった。これら29ヵ国について、2009年度と2018年度のデータが得られている。\\
\\
\\
(1) 各国において、学習者数を教員数で割ることにより、国ごとの\\
「教員1人当たりの学習者数」を算出することができる。図1と図2(※動画参照)は、\\
2009年度および2018年度における「教員1人当たりの学習者数」のヒストグラム\\
である。これら二つのヒストグラムから、9年間の変化に関して、後のことが読み取れる。\\
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。\\
\\
\\
・2009年度と2018年度の中央値が含まれる階級の階級値を比較すると、\boxed{\ \ ケ\ \ }\\
・2009年度と2018年度の第1四分位数が含まれる階級の階級値を比較すると、\boxed{\ \ コ\ \ }\\
・2009年度と2018年度の第3四分位数が含まれる階級の階級値を比較すると、\boxed{\ \ サ\ \ }\\
・2009年度と2018年度の範囲を比較すると、\boxed{\ \ シ\ \ }。\\
・2009年度と2018年度の四分位範囲を比較すると、\boxed{\ \ ス\ \ }。\\
\\
\boxed{\ \ ケ\ \ }~\boxed{\ \ ス\ \ }を次の⓪~③のうちから一つ選べ。\\
⓪ 2018年度の方が小さい\\
① 2018年度の方が大きい\\
② 両者は等しい\\
③ これら二つのヒストグラムからだけでは両者の大小を判断できない\\
\\
\\
(2)各国において、学習者数を教育機関数で割ることにより、「教育機関1機関あたりの\\
学習者数」も算出した。図3(※動画参照)は、2009年度における\\
「教育機関1機関あたりの学習者数」の箱ひげ図である。\\
\\
2009年度について、「教育機関1機関あたりの学習者数」(横軸)と\\
「教員1人当たりの学習者数」(縦軸)の散布図は\boxed{\ \ セ\ \ }である。ここで、\\
2009年度における「教員1人当たりの学習者数」のヒストグラムである(1)の図1\\
を、図4(※動画参照)として再掲しておく。\\
\\
\boxed{\ \ セ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ選べ。\\
なお、これらの散布図には、完全に重なっている点はない。\\
(※選択肢は動画参照)\\
\\
(3) 各国における2018年度の学習者数を100としたときの2009年度の学習者数S,\\
および、各国における2018年度の教員数を100としたときの2009年度の\\
教員数Tを算出した。\\
例えば、学習者数について説明すると、ある国において、2009年度が44272人,\\
2018年度が174521人であった場合、2009年度の学習者数Sは\\
\frac{44272}{174521}×100 より25.4と算出される。\\
表1(※動画参照)はSとTについて、平均値、標準偏差および共分散を計算したものである。\\
ただし、SとTの共分散は、Sの偏差とTの偏差の積の平均値である。\\
表1の数値が四捨五入していない正確な値であるとして、SとTの相関係数\\
を求めると\boxed{\ \ ソ\ \ }, \boxed{\ \ タチ\ \ } である。\\
\\
(4) 表1と(3)で求めた相関係数を参考にすると、(3)で算出した2009年度の\\
S(横軸)とT(縦軸)の散布図は\boxed{\ \ ツ\ \ }である。\\
\\
\boxed{\ \ ツ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ\\
選べ。なお、これらの散布図には、完全に重なっている点はない。\\
(※選択肢は動画参照)
\end{eqnarray}

2022共通テスト数学過去問
投稿日:2022.01.18

<関連動画>

3乗根の問題の作り方

アイキャッチ画像
単元: #数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\sqrt[3]{ 27+6\sqrt{ 21 } }+\sqrt[3]{ 27-6\sqrt{ 21 } }$計算して値を求めよ

(2)
(1)の類題を作れ
この動画を見る 

2023高校入試解説9問目 和と差の積は二乗の差 日大習志野

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(1+\sqrt 2)(1+\sqrt 8)(1-\frac{1}{\sqrt 2})(1-\frac{1}{\sqrt 8})$

2023日本大学習志野高等学校
この動画を見る 

2つの合同な直角三角形 斜線部の面積=❓ 青雲中

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△BDA $\equiv$ △CFA
四角形EFDAの面積は?
*図は動画内参照

青雲中学校
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 座標平面上の四角形ABCDは以下の条件を満たすとする。\\
(\textrm{a})頂点Aの座標は(-1,-1)である。\\
(\textrm{b})四角形の各辺は原点を中心とする半径1の円と接する。\\
(\textrm{c})\angle BCDは直角である。\\
また、辺ABの長さをlとし、\angle ABC=\thetaとする。\\
\\
(1)\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}である。\\
\\
(2)辺CDの長さが\frac{5}{3}であるとき、l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}\ である。\\
\\
(3)\thetaは鋭角とする。四角形ABCDの面積が6であるとき、l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}\ ,\ \\
\\
\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}である。\\
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

【共通テスト】数学IA 第2問を瞬時に解くテクニックを解説します(2021.本試験)

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
ストライドを$x$、ピッチを$z$とおく。
ピッチは1秒あたりの少数、ストライドは1歩あたりの進む距離なので、1秒あたりの進む距離すなわち平均速度は、$x$と$z$を用いて[ア](m/秒)と表される。
これより、タイムと、ストライド、ピッチとの関係は
タイム=$\displaystyle \frac{100}{[ア]}$

と表されるので、[ア]が最大になるときにタイムが最もよくなる。
ただし、タイムがよくなるとは、タイムの値が小さくなることである。

[ア]を以下から選べ。
⓪$x+z$
①$z-x$
②$xz$

③$\displaystyle \frac{x+z}{[2]}$

④$\displaystyle \frac{z-x}{[2]}$

⑤$\displaystyle \frac{xz}{[2]}$


(2)
男子短距離100m走の選手である太郎さんは、①に着目して、タイムが最もよくなるストライドとピッチを考えることにした。
次の表は、太郎さんが練習で100mを3回走ったときのストライドとピッチのデータである。
-----------------
      1回目 2回目 3回目
ストライド  2.05 2.10 2.15
ピッチ 4,70 4.60 4.50
-----------------
また、ストライドとピッチにはそれぞれ限界がある。
太郎さんの場合、ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという関係があると考えて、ピッチがストライドの1次関数としてなされると仮定した。
このとき、ピッチ$z$はストライド$x$を用いて
$z=[イウ]x+\displaystyle \frac{[エオ]}{5}$ と表される。

②が太郎さんのストライドの最大値2.40とピッチの最大値4.80まで成り立つと仮定すると、$x$の値の範囲は次のようになる。
$[カ].[キク]\leqq x \leqq 2.40$

$y=[ア]$とおく。
②を$y=[ア]$に代入することにより、$y$と$x$の関数として表すことができる。
太郎さんのタイムが最もよくなるストライドとピッチを求めるためには、$[カ].[キク]\leqq x \leqq 2.40$の範囲で$y$の値を最大にする$x$の値を見つければよい。
このとき、$y$の値が最大になるのは$x=[ケ].[コサ]$のときである。
よって、太郎さんのタイムが最もよくなるのは、ストライドが[ケ].[コサ]のときであり、このとき、ピッチは[シ].[スセ]である。
このときの太郎さんのタイムは①により[ソ]である。

[ソ]については、最も適当なものを、次の⓪~⑤のうちから、一つ選べ。
⓪9.68
①9.97
②10.09
③10.33
④10.42
⑤10.55
この動画を見る 
PAGE TOP