問題文全文(内容文):
$n\in IN$,$\displaystyle \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right)^n=e$
を満たすとき,
$x\in IR$,$\displaystyle \lim_{x\to\infty}\left(1+\dfrac{1}{x}\right)^n=e$
を示せ.
$n\in IN$,$\displaystyle \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right)^n=e$
を満たすとき,
$x\in IR$,$\displaystyle \lim_{x\to\infty}\left(1+\dfrac{1}{x}\right)^n=e$
を示せ.
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$n\in IN$,$\displaystyle \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right)^n=e$
を満たすとき,
$x\in IR$,$\displaystyle \lim_{x\to\infty}\left(1+\dfrac{1}{x}\right)^n=e$
を示せ.
$n\in IN$,$\displaystyle \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right)^n=e$
を満たすとき,
$x\in IR$,$\displaystyle \lim_{x\to\infty}\left(1+\dfrac{1}{x}\right)^n=e$
を示せ.
投稿日:2021.03.06





