反比例の変域 桃山学院 - 質問解決D.B.(データベース)

反比例の変域 桃山学院

問題文全文(内容文):
$y=\frac{12}{x} $ (x < -4)
$\boxed{?} <y< \boxed{?}$

桃山学院高等学校
単元: #数学(中学生)#中1数学#比例・反比例#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=\frac{12}{x} $ (x < -4)
$\boxed{?} <y< \boxed{?}$

桃山学院高等学校
投稿日:2021.03.24

<関連動画>

【高校受験対策/数学】死守62

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#2次方程式#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守62

①$1+(-0.2)\times 2$を計算しなさい。

②方程式$\frac{2x+4}{3}=4$を解きなさい。

③$a=\frac{1}{2},b=3$のとき、 $3(a-2b)-5(3a-b)$の値を 求めなさい。

④$x$についての方程式
$x^2-2ax+3=0$の解の1つが$-1$であるとき、もう1つの解を求めなさい。

⑤1個$a$ kgの品物3個と1個$b$ kgの品物2個の合計の重さは20kg以上である。
この数量の関係を不等式で表しなさい。

⑥右の図のように、側面がすべて長方形の正六角柱がある。
このとき、辺ABとねじれの位置にある辺の数を求めなさい。

⑦家から$a$ m離れた博物館まで、行きは毎分60m、帰りは毎分90mの速さで往復した。
往復の平均の速さは分速( )mである。( )にあてはまる数を求めなさい。

⑧次のア~エのことがらについて、逆が正しいものを1つ選んで記号を書きなさい。

ア 正三角形はすべての内角が等しい三角形である。
イ 長方形は対角線がそれぞれの中点で交わる四角形である。
ウ $x \geqq 5$ならば$x \gt 4$である。
エ $x=1$ならば$x^2=1$である。

⑨右図のように直線$l$上に2点O,Pがある。
点Oを回転の中心として点Pを時計回りに45°回転移動させた点Qを、定規とコンパスを用いて作図しなさい。
ただし作図に用いた線は消さないこと。
この動画を見る 

【中1 数学】中1-17 式の値

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
式の中の文字とある数字をメンバーチェンジすることを① ____する、っていうんだ!!
◎$x=-3$のとき、次の式の値は?
②$4x+5$
③$\displaystyle \frac{9}{x} $
④$x^2$
⑤$-x^2+5x$
◎$x=-3,y=\displaystyle \frac{1}{2}$のとき、次の値は?
⑥$-x+6y$
⑦$3x-4y+1$
⑧$\displaystyle \frac{5}{6} x +y^2$
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

15秒数で数学の解法!~全国入試問題解法 #shorts #数学 #高校入試 #動体視力

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3の倍数より1大きい数の2乗から,同じ3の倍数より1小さい数の2乗を
引いた差は,12の倍数である.

この考えがいつでも成り立つことを説明しなさい.

函館白百合学園高校過去問
この動画を見る 

【中1 数学】中1-66 図形の移動① ~基本編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\boxed{1}$を①____移動といい、対応する点を結んだ線分は、それぞれ②___で、その長さは③_____。

$\boxed{2}$を④____移動といい、中心とした点Oを⑤____という。
この移動の中で、180°の④‗‗‗‗‗‗移動を⑥____移動という。

$\boxed{3}$を⑦____移動といい、直線ℓを⑧____という。
そして、⑧‗‗‗‗‗‗は対応する2点を結んだ線分の⑨____になる。
※図は動画内参照
この動画を見る 
PAGE TOP