大学入試問題#734「落とせん!!」 東海大学医学部(2004) 不定積分 - 質問解決D.B.(データベース)

大学入試問題#734「落とせん!!」 東海大学医学部(2004) 不定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{2x+1}{x(x-1)^2}dx$

出典:2004年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{2x+1}{x(x-1)^2}dx$

出典:2004年東海大学医学部 入試問題
投稿日:2024.02.13

<関連動画>

2020年東大 ヨビノりたくみさん解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,b \gt 0$
$C:y=x^3-3ax^2+b$

条件1 $C$は$x$軸に接する
条件2 $x$軸と$C$で囲まれた領域(除く境界)に格子点1つのみ

$b$を$a$で表せ
$a$の範囲を求めよ

出典:2020年東京大学 過去問
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(4)〜三角形の面積の最大Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)辺の長さが3,4,5の3角形がある。それぞれの辺の中点上に3つの点A,B,Cがあり、ある時刻から同時に動き出し、3点とも反時計回りに速さ1で3角形の周上を回る(ある辺から頂点に到達したらその頂点を含む別の辺へと進む)とする。3角形ABCの面積が最大になるときの面積を求めよ。
この動画を見る 

京大入試問題 数学 頑張れば小中学生にも解けるぞ Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
$n \geqq 3$とする。1,2,・・・,nのうちから重複を許して6個の数字をえらびそれを並べた順列を考える。
このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ。
この動画を見る 

福田の数学〜千葉大学2023年第6問〜連立漸化式となる確率Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 1個のさいころを投げて出た目によって数直線上の点Pを動かすことを繰り返すゲームを考える。最初のPの位置を$a_0$=0とし、さいころを$n$回投げたあとのPの位置$a_n$を次のルールで定める。
・$a_{n-1}$=7 のとき、$a_n$=7
・$a_{n-1}$≠7 のとき、$n$回目に出た目$m$に応じて
$a_n$=$
\left\{\begin{array}{1}
a_{n-1}+m (a_{n-1}+m=1,3,4,5,6,7のとき)\\
1 (a_{n-1}+m=2,12のとき)\\
14-(a_{n-1}+m) (a_{n-1}+m=8,9,10,11のとき)\\
\end{array}\right.
$
(1)$a_2$=1 となる確率を求めよ。
(2)$n$≧1について、$a_n$=7 となる確率を求めよ。
(3)$n$≧3について、$a_n$=1 となる確率を求めよ。
この動画を見る 

富山県立大 数学的帰納法・二項展開・合同式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ

出典:富山県立大学 過去問
この動画を見る 
PAGE TOP