大学入試問題#645「もはや盤上この1手」 埼玉大学(2013) 定積分 - 質問解決D.B.(データベース)

大学入試問題#645「もはや盤上この1手」 埼玉大学(2013)  定積分

問題文全文(内容文):
$a \gt 1$
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x(a^2-4\cos^2\ x)\sin\ x}{a^2-\cos^2\ x} dx$

出典:2013年埼玉大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: ますただ
問題文全文(内容文):
$a \gt 1$
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x(a^2-4\cos^2\ x)\sin\ x}{a^2-\cos^2\ x} dx$

出典:2013年埼玉大学 入試問題
投稿日:2023.11.11

<関連動画>

大学入試問題#75 横浜国立大学(2006) 部分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}x(log\ x)^2dx$を計算せよ。

出典:2006年横浜国立大学 入試問題
この動画を見る 

福田の数学〜中央大学2023年理工学部第4問〜関数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の問いに答えよ。
(1)整式$f(x)$=$a_nx^n$+$a_{n-1}x^{n-1}$+...+$a_1x$+$a_0$ ($a_0$≠0)に対し、
$f(x+1)$-$f(x)$=$b_nx^n$+$b_{n-1}x^{n-1}$+...+$b_1x$+$b_0$ ($a_0$≠0)
と表すとき、$b_n$と$b_{n-1}$を求めよ。
(2)整式$g(x)$が恒等式$g(x+1)$-$g(x)$=$(x-1)x(x+1)$および$g(0)$=0を満たすとき、$g(x)$を求めよ。
(3)整式$h(x)$が恒等式$h(2x+1)$-$h(2x)$=$h(x)$-$x^2$を満たすとき、$h(x)$を求めよ。
この動画を見る 

岐阜大 積分 3次方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#不定積分・定積分#岐阜大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+ax^2-\displaystyle \int_{-2}^{1} x f(t) dt$
$f(x)=0$が異なる3つの実数解をもつ$a$の範囲を求めよ

出典:2013年岐阜大学 過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第3問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2021年度東京大学 数学 理科第3問(1)解説
東京大学 2021年理科第3問(2)それぞれの項で分けて丁寧に積分せよ
関数
$f(x)=\dfrac{x}{x²+3}$
に対して、$y=f(x)$のグラフをCとする。点A($1,f(1)$)におけるCの接線を
$l:y=g(x)$
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
$\displaystyle \int_{\alpha}^1{f(x)-g(x)}^2 dx$
を計算せよ。
この動画を見る 

大学入試問題#745「落ち着けばどうにかなる」 早稲田大学理工学部(2002) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$とする。
$I(\theta)=\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-\tan\theta\cos\ x|\sin2x\ dx$

(1)$I(\theta)$を求めよ。
(2)$I(\theta)$を最小にする$\theta$に対し、$\cos\theta$の値を求めよ。

出典:2002年早稲田大学理工学部 入試問題
この動画を見る 
PAGE TOP