【For you 動画-7】 中3-因数分解などなど - 質問解決D.B.(データベース)

【For you 動画-7】  中3-因数分解などなど

問題文全文(内容文):
計算せよ。
①$x^2-6xy+9y^2-z^2$
②$x^4-10x^2+9$
③$\displaystyle \frac{x^2}{2}-\displaystyle \frac{y^2}{18}$
④$3x^2+2x-8$
⑤$3\sqrt{ 3 },5,4\sqrt{ 2 }$の大小関係を不等号を 使って表そう!!
◎$A=x^2-5xy,B=-6x^2+3y^2,C=2x^2-3xy+4y^2$のとき、次の計算をしよう!
⑥$3(A-2B)-2(A-3B)$
⑦$A-3(A-2B+C)+2(A-3B+4C)$
単元: #中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$x^2-6xy+9y^2-z^2$
②$x^4-10x^2+9$
③$\displaystyle \frac{x^2}{2}-\displaystyle \frac{y^2}{18}$
④$3x^2+2x-8$
⑤$3\sqrt{ 3 },5,4\sqrt{ 2 }$の大小関係を不等号を 使って表そう!!
◎$A=x^2-5xy,B=-6x^2+3y^2,C=2x^2-3xy+4y^2$のとき、次の計算をしよう!
⑥$3(A-2B)-2(A-3B)$
⑦$A-3(A-2B+C)+2(A-3B+4C)$
投稿日:2013.03.18

<関連動画>

福田のおもしろ数学134〜n個の因数の席の計算

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 福田次郎
問題文全文(内容文):
次の式を計算せよ。$x$≠1 とする。
(1+$x$)(1+$x^2$)(1+$x^4$)...(1+$x^{2^{n-1}}$) を計算せよ。
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 

【数学】中3-14 式の計算の利用④ 図の証明編

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎縦の長さが$m$、横の長さが$n$の長方形の
まわりに幅のの道がある。道の真ん中を通る線を$ℓ$とするとき、道の面積$S$が$a,ℓ$に等しいことを証明しよう! !
長さはどう表せる?




【証明】
$S$=⑤______
=⑥______(整理)
$ℓ$=⑦______
=⑧______(整理)だから、
$a,ℓ$=⑨__________。
よって$S=a,ℓ$___

◎半径$r$の円形の池のまわりに、 幅$a$の道がある。
道の真ん中を通る線を$ℓ$とするとき、道の面積$S$が$a,ℓ$に等しいことを証明しよう!!
$ℓ$の円の直径は⑩____ で
一番外の円の半径は⑪____ だね。
【証明】
$S$=⑫______
=⑬______(展開)
=⑭______(整理)
$ℓ$=⑮______
=⑯______(整理)だから、
$a,ℓ$=⑰__________。
よって$S=a,ℓ$___
この動画を見る 

どうやって出す?

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
どうやって出す?
【問題文】19×21
※式は動画内参照
この動画を見る 

智弁和歌山 誰もが一度 ハマったことのある意外な落とし穴とは? 式の値

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$a-b=3,ab=3$のとき
$2a^2+2b^2=$

智弁学園和歌山高等学校
この動画を見る 
PAGE TOP