京大の不等式の証明問題!3通りで解いてみました【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

京大の不等式の証明問題!3通りで解いてみました【京都大学】【数学 入試問題】

問題文全文(内容文):
0<x(1-x²)√x/2が成り立つことを証明せよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
0<x(1-x²)√x/2が成り立つことを証明せよ。
投稿日:2024.12.09

<関連動画>

福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
この動画を見る 

福田の数学〜神戸大学2025文系第3問〜単位円周上の2点と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#場合の数#三角関数#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$1$個のさいころを$2$回続けて投げるとき、

出た目の数を順に$a,b$とおく。

座標平面上の$2$点$A,B$を

$A\left(\cos \dfrac{a}{6}\pi,\sin\dfrac{a}{6}\pi\right),\quad B\left(\cos \dfrac{b+6}{6}\pi,\sin\dfrac{b+6}{6}\pi\right)$

とし、原点を$O$とする。

以下の問いに答えよ。

(1)$3$点$O,A,B$が一直線上にある確率を求めよ。

(2)$3$点$O,A,B$が一直線上になく、かつ

三角形$OAB$の面積が$\dfrac{1}{4}$以下である

確率を求めよ。

(3)$2$点$A,B$間の距離が$1$より

大きい確率を求めよ。

$2025$年神戸大学文系過去問題
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(2)〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)座標平面上の曲線$x^2+2xy+2y^2=5$を$C$とする。
$(\textrm{a})$直線$2x+y=t$が曲線$C$と共有点をもつとき、実数$t$の取り得る値の範囲は
$\boxed{コ}\leqq t \leqq \boxed{サ}$である。
$(\textrm{b})$直線$2x+y=1$が曲線$C$と$x \geqq 0$の範囲で共有点を少なくとも1個もつとき、
実数$t$ の取り得る値の範囲は$-\frac{1}{2}\sqrt{\boxed{シス}} \leqq t \leqq \boxed{セ}$である。

2022明治大学理工学部過去問
この動画を見る 

2023一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
A,B,Cの3人が順番にサイコロを振り,最初に1を出した人が勝ち,
だれかが1を出すか、全員がn回ずつ振ったら終了
A,B,Cそれぞれが勝つ確率$P_A,P_B,P_C$を求めよ.

2023一橋大過去問
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(3)〜受験編、東大の問題に挑戦!

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} \triangle ABC$は一辺の長さが2の正三角形である。点Aから発射された
光線は$\triangle ABC$の各辺にぶつかるたびに反射する。このとき、入射角
と反射角は等しい。この光線は$\triangle ABC$のどれかの頂点にぶつかると
そこで吸収されてしまう。今、Aから傾き$\displaystyle \frac{\sqrt3}{6}$
で発射された光線は何回か反射した後、どこかの
頂点に吸収された。さて、何回反射し、どの頂点に吸収されたのか。

東京大学過去問
この動画を見る 
PAGE TOP