2024年共通テスト徹底解説〜数学ⅡB第2問微分積分〜福田の入試問題解説 - 質問解決D.B.(データベース)

2024年共通テスト徹底解説〜数学ⅡB第2問微分積分〜福田の入試問題解説

問題文全文(内容文):
共通テスト2024の数学ⅡB第2問微分積分を徹底解説します
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第2問微分積分を徹底解説します
投稿日:2024.01.23

<関連動画>

【日本最速解答速報】共通テスト2023数学1A 第4問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2。微分積分の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]aを実数とし、f(x)=x^3-6ax+16\\
(1)y=f(x)のグラフの概形は\\
a=0のとき、\boxed{\ \ ア\ \ }\\
a \gt 0のとき、\boxed{\ \ イ\ \ }\\
である。\\
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }については、最も適当なものを、次の⓪~⑤のうちから\\
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
(※選択肢は動画参照)\\
\\
\\
(2)a \gt 0とし、pを実数とする。座標平面上の曲線y=f(x)と直線y=p\\
が3個の共有点をもつようなpの値の範囲は\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }\\
である。\\
p=\boxed{\ \ ウ\ \ }のとき、曲線y=f(x)と直線y=pは2個の共有点をもつ。\\
それらのx座標をq,r(q \lt r)とする。曲線y=f(x)と直線y=p\\
が点(r,p)で接することに注意すると\\
q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}\\
と表せる。\\
\\
\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪2\sqrt2a^{\frac{3}{2}}+16 ①-2\sqrt2a^{\frac{3}{2}}+16\\
②4\sqrt2a^{\frac{3}{2}}+16 ③-4\sqrt2a^{\frac{3}{2}}+16\\
④8\sqrt2a^{\frac{3}{2}}+16 ⑤-8\sqrt2a^{\frac{3}{2}}+16\\
\\
(3)方程式f(x)=0の異なる実数解の個数をnとする。次の⓪~⑤のうち、\\
正しいものは\boxed{\ \ ケ\ \ }と\boxed{\ \ コ\ \ }である。\\
\\
\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }の解答群(解答の順序は問わない。)\\
\\
⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1\\
②n=2ならばa \lt 0 ③a \lt 0ならばn=2\\
④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3\\
\\
\\
[2]b \gt 0とし、g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2とおく。\\
座標平面上の曲線y=g(x)をC_1, 曲線y=h(x)をC_2とする。\\
\\
\\
C_1とC_2は2点で交わる。これらの交点のx座標をそれぞれ\alpha,\beta\\
(\alpha \lt \beta)とすると、\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }である。\\
\alpha \leqq x \leqq \betaの範囲でC_1とC_2で囲まれた図形の面積をSとする。また、\\
t \gt \betaとし、\beta \leqq x \leqq tの範囲でC_1とC_2および直線x=tで囲まれた図形の\\
面積をTとする。\\
このとき\\
S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx\\
T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx\\
S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx\\
であるので\\
S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)\\
が得られる。\\
したがって、S=Tとなるのはt=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ bのときである。\\
\\
\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}\\
②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}\\
④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}\\
⑥2g(x) ⑦2h(x)
\end{eqnarray}
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第1問(2)整式の除法〜福田の入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第1問(2)整数の除法を徹底解説します
この動画を見る 

2023年共通テスト数学2B講評【まさかの和積の公式登場】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: ユーテラ授業チャンネル【YouTubeの寺子屋】
問題文全文(内容文):
2023年共通テスト「和積の公式」の講評です。
※問題文は動画内参照
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[2]。データの分析の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} [2]就業者の従事する産業は第1次産業、第2次産業、第3次産業の三つに分類される。\\
都道府県別に、就業者数に対する各産業に就業する人数の割合を、\\
各産業の「就業者数割合」と呼ぶことにする。\\
\\
(1)図1(※動画参照)は、1975年から2010年まで5年ごとの8個の年度(それ\\
ぞれを時点という)における都道府県別の三つの産業の就業者\\
数割合を箱ひげ図で表したものである。各時点の箱ひげ図は、\\
それぞれ上から第1次産業、第2次産業、第3次産業である。 \\
次の①~⑤のうち、図1から読み取れることとして正しくない\\
ものは\boxed{\ \ タ\ \ }と\boxed{\ \ チ\ \ }である。\\
\\
タ、チの解答群\\
\\
⓪ 第1次産業の就業者数割合の四分位範囲は、2000年までは\\
後の時点になるにしたがって減少している。\\
① 第1次産業の就業者数割合について、左側のひげの長さと右側\\
のひげの長さを比較すると、どの時点においても左側の方が長い。\\
② 第2次産業の就業者数割合の中央値は、1990年以降、後の時点\\
になるにしたがって減少している。\\
③ 第2次産業の就業者数割合の第1四分位数は、後の時点にした\\
がって減少している。\\
④ 第3次産業の就業者数割合の第3四分位数は、後の時点にした\\
がって増加している。\\
⑤ 第3次産業の就業者数割合の最小値は、後の時点にしたがって増加している。\\
\\
\\
(2)(1)で取り上げた8時点の中から5時点を取り出して考える。\\
各時点における都道府県別の、第1次産業と第3次産業の就業\\
者数割合のヒストグラムを一つのグラフにまとめてかいたもの\\
が、右の5つのグラフである。それぞれの右側の網掛けした\\
ヒストグラムが第3次産業のものである。なお、ヒストグラム\\
の各階級の区間は、左側の数値を含み、右側の数値を含まない。\\
・1985年度におけるグラフは\boxed{\ \ ツ\ \ } である。\\
・1995年度におけるグラフは\boxed{\ \ テ\ \ } である。\\
\\
(※\boxed{\ \ ツ\ \ }, \boxed{\ \ テ\ \ }の選択肢は動画参照)\\
\\
(3) 三つの産業から二つずつを組み合わせて都道府県別の就業者数割合\\
の散布図を作成した。右の図2の散布\\
図群は、左から順に1975年度における第1次産業(横軸)と\\
第2次産業(縦軸)の散布図、第2次産業(横軸) \\
と第3次産業(縦軸)の散布図、第3次産業(横軸)と第1次産業(縦軸)の散布図である。\\
また、図3(※動画参照)は同様に作成した2015年度の散布図群である。\\
下の (\textrm{I})(\textrm{II})(\textrm{III}) は1975年度を基準にしたときの、\\
2015年度の変化を記述したものである。ただし、ここで\\
「相関が強くなった」とは、相関係数の絶対値が大きくなったことを意味する。\\
\\
(\textrm{I}) 都道府県別の第1次産業の就業者数割合と第2次産業\\
の就業者数割合の間の相関は強くなった。\\
(\textrm{II}) 都道府県別の第2次産業の就業者数割合と第3次産業\\
の就業者数割合の間の相関は強くなった。 \\
(\textrm{III}) 都道府県別の第3次産業の就業者数割合と第1次産業\\
の就業者数割合の間の相関は強くなった。\\
正誤の組み合わせとして正しいのは\boxed{\ \ ト\ \ }である。\\
(※\boxed{\ \ ト\ \ }の選択肢は動画参照)\\
\\
(4) 各都道府県の就業者数割合の内訳として男女別の\\
就業者数も発表されている。そこで、就業者数に対する\\
男性・女性の就業者数の割合をそれぞれ「男性の就業者数割合」、\\
「女性の就業者数割合」と呼ぶことにし、\\
これらを都道府県別に算出した、下の図4(※動画参照)は、2015年度における\\
都道府県別の、第1次産業の就業者数割合(横軸)、\\
男性の就業者数割合(縦軸)の散布図である。\\
各都道府県の、男性の就業者数と女性の就業者数を\\
合計すると就業者数の全体になることに注意すると、\\
2015年度における都道府県別の、第1次産業の就業者数割合(横軸)と、\\
女性の就業者数割合(縦軸)の 散布図は\boxed{\ \ ナ\ \ }である。\\
ナについては①~③のうちから 最も適当なものを一つ選べ。
\end{eqnarray}
この動画を見る 
PAGE TOP