【数Ⅰ】図形と計量: 0°≦x≦180°のとき、関数y=sin²x+cosx+1の最大値、最小値を求めましょう。 - 質問解決D.B.(データベース)

【数Ⅰ】図形と計量: 0°≦x≦180°のとき、関数y=sin²x+cosx+1の最大値、最小値を求めましょう。

問題文全文(内容文):
$0°≦x≦180°$のとき、関数$y=sin²x+cosx+1$の最大値、最小値を求めよ。
チャプター:

0:00 オープニング
0:13 STEP1
1:08 STEP2
2:17 STEP3
3:12 STEP4
4:15 STEP5

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #高校リード問題集#高校リード問題集数Ⅰ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0°≦x≦180°$のとき、関数$y=sin²x+cosx+1$の最大値、最小値を求めよ。
投稿日:2020.06.30

<関連動画>

福田のわかった数学〜高校1年生059〜図形の計量(10)正四面体の各辺に接する球の半径

アイキャッチ画像
単元: #数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(10)
1辺の長さがaの正四面体の全ての辺に接する球の半径を求めよ。
この動画を見る 

【数Ⅰ】【集合と論証】対偶の使い方 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【1問目】
$m,n$は整数とする。次の命題を証明せよ。

(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。

【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(7)〜集合と座標平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (7)座標平面の3つの部分集合
A=$\left\{(x, -2x+2)|xは実数, x<0\right\}$
B=$\left\{(x, 2x+2)|xは実数, x≧0\right\}$
C=$\left\{(x, -x+3)|xは実数\right\}$
に対し、(A$\cup$B)$\cap$C に属する点の座標をすべて求めると$\boxed{\ \ キ\ \ }$である。
この動画を見る 

藤田保健衛生大(医)5乗根の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 5 ]{ \displaystyle \frac{5\sqrt{ 5 }+11}{2} }-\sqrt[ 5 ]{ \displaystyle \frac{5\sqrt{ 5 }-11}{2} }$

出典:2017年藤田医科大学医学部 過去問
この動画を見る 

素数になる2次式

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
この動画を見る 
PAGE TOP