入試に必須!標本調査の利用!意外と難しいので差がつく単元!ぜひマスターしよう!【中3数学】 - 質問解決D.B.(データベース)

入試に必須!標本調査の利用!意外と難しいので差がつく単元!ぜひマスターしよう!【中3数学】

問題文全文(内容文):
1⃣Aさんの中学校の生徒数は324人です。Aさんのクラスは36人で、そのうちの10人が昨日の野球中継をテレビで見ていました。
この野球中継は、Aさんの中学校全体では、何人の生徒が見ていたと推測できますか?

2⃣いくつかの白玉のみが入っている箱があります。その箱から42個の白玉を取り出し、代わりに42個の黒玉を入れてよくかき混ぜました。その後、コップで箱の中の玉をすくうと、黒玉3個と白玉35個が入っていました。はじめに箱の中に入っていた白玉の数は、およそ何個と推測されますか?
チャプター:

0:00 オープニング
0:24 今日の学習内容説明
1:10 標本調査の基礎用語
2:17 標本調査の活用法 パターン1 不良品の発生割合 やり方説明
4:55 標本調査の活用法 パターン2 玉の数の予想 やり方説明
7:09 例題① クラスの割合から学校全体での人数を求める 問題提示
7:16 例題① クラスの割合から学校全体での人数を求める 問題解説
8:21 例題② 白玉と黒玉の比率から元の箱の白玉の数を求める 問題提示
8:29 例題② 白玉と黒玉の比率から元の箱の白玉の数を求める 問題解説
10:37 まとめ
11:02 こばちゃん塾紹介
11:31 おすすめ動画紹介

単元: #数学(中学生)#中3数学#標本調査
指導講師: こばちゃん塾
問題文全文(内容文):
1⃣Aさんの中学校の生徒数は324人です。Aさんのクラスは36人で、そのうちの10人が昨日の野球中継をテレビで見ていました。
この野球中継は、Aさんの中学校全体では、何人の生徒が見ていたと推測できますか?

2⃣いくつかの白玉のみが入っている箱があります。その箱から42個の白玉を取り出し、代わりに42個の黒玉を入れてよくかき混ぜました。その後、コップで箱の中の玉をすくうと、黒玉3個と白玉35個が入っていました。はじめに箱の中に入っていた白玉の数は、およそ何個と推測されますか?
投稿日:2020.12.13

<関連動画>

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

【シンプルな計算に注意!】二次方程式:宮崎県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#宮崎県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 宮崎県の高校

二次方程式
$3x^2-x-1=0$
を計算せよ。

この動画を見る 

【中2 数学】  2-③⑨ 一次関数の利用③ ・ 動点編

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 一次関数の利用③ ・ 動点編
以下の問に答えよ
毎秒1cmで A → B → C → D (動点 P ) 、△ ADP が y ㎠
① 動点 P が AB 上
② 動点 P が BC 上
③ 動点 P が CD 上
※図は動画内参照
この動画を見る 

【中学数学】2次関数の問題~2024年度北海道公立高校入試大問3~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ユキさんたちのクラスでは、数学の授業で関数のグラフについてコンピュータを使って学習しています。次の問いに答えなさい。
問1 先生が提示した画面1には、関数$y=x^{ 2 }$のグラフと、このグラフ上の2点A、Bを通る直線が表示されています。点Aの$x$座標は3、点Bの$x$座標は-2です。点Oは原点とします。
ユキさんは、画面1を見て、2点A、Bを通る直線の式を求めたいと考え、求め方について、次のような見通しを立てています。

ユキさんの見通し
2点A、Bを通る直線の式を求めるには、2点A、Bの座標がわかれば良い。

次の(1)、(2)に答えなさい。
(1)点Aの$y$座標を求めなさい。
(2)ユキさんの見通しを用いて、2点A、Bを通る直線の式を求めなさい。

問2 △PQRが直角二等辺三角形になる時の$t$の値を求めなさい。

先生が提示した画面2には2つの関数$y=2x^{ 2 }$・・・①,$y=\frac{1}{2}x^{ 2 }$・・・②のグラフが表示されています。①のグラフ上に点Pがあり、点Pの$x$座標は$t$です。点Qは、点Pと$y$軸について対称な点です。また、点Rは、点Pを通り、$y$軸に平行な直線と②のグラフとの交点です。点Oは原点とし、$t$>0とします。

ユキさんたちは、点Pを①のグラフ上で動かすことで、△PQRがどのように変化するかについて、話し合っています。
ユキさん「点Pを動かすと、点Qと点Rも同時に動くね。」
ルイさん「このとき、△PQRはいつでも直角三角形になるね。」
ユキさん「・・・あれ?△PQRが直角に等辺三角形に見えるときがあるよ?」
ルイさん「本当に直角二等辺三角形になるときがあるのかな。」
ユキさん「じゃあ、△PQRが直角二等辺三角形になるときの点Pの座標を求めてみようか。」
ルイさん「点Pの座標を求めるには、$t$の値がわかればいいね。」

△PQRが直角二等辺三角形になるときの$t$の値を求めなさい。
この動画を見る 

言いたいことはただ一つ

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$6x^2+14x+4$を因数分解
この動画を見る 
PAGE TOP