大阪大の問題の背景 特に文系の人見てください - 質問解決D.B.(データベース)

大阪大の問題の背景 特に文系の人見てください

問題文全文(内容文):
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#複素数平面#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
投稿日:2022.03.02

<関連動画>

福田の数学〜慶應義塾大学看護医療学部2025第5問〜データの分析、平均と分散

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

(1)$20$人の生徒に、$5$点満点の小テストを行った。

次の度数分布表は全員のテストの得点である。

この小テストの得点の平均値は$\boxed{ハ}$、

分散は$\boxed{ヒ}$である。

また、生徒のうちの$1$名の得点が$\boxed{フ}$点から

$\boxed{ヘ}$点に変更された場合、

生徒全員の得点の平均値は$3$、分散は$2$となる。

(2)確率変数$X$と$Y$は独立であり、$X$の平均が$m_x$、

分散が$\upsilon_x$であるとする。

また、$a,b$は定数とする。このとき、$aX+bY$の

平均は$\boxed{ホ}$、分散は$\boxed{マ}$である。

(3)確率変数$X_1,X_2,\cdots,X_n,X_{n+1}$は互いに

独立であり、

$T_n=\dfrac{1}{n}(X_1+X_2+\cdots + X_n)$

の平均が$m$、分散が$\upsilon$であるとする。

$X_{n+1}$の平均が$m'$、分散が$\upsilon'$であるとき、

$T_{n+1}=\dfrac{1}{n+1}(X_1+X_2+\cdots +X_n+X_{n+1})$

の平均は$\boxed{ミ}$、分散は$\boxed{ム}$である。

図は動画内参照

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

出た分野の授業します

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通部分と和集合の違い
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(6)〜整数解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)整数$x,y$が$x \gt 1,y \gt 1,x \neq y$を満たし、等式
$6x^2+13xy+7x+5y^2+7y+2=966$
を満たすとする。
$(\textrm{i})6x^2+13xy+7x+5y^2+7y+2$を因数分解すると$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})$この等式を満たすxとyの組をすべて挙げると$(x,y)=\boxed{\ \ サ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

福田のわかった数学〜高校1年生058〜図形の計量(8)正四面体の外接球の半径

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(9)
1辺の長さがaである正四面体の各頂点を通る外接球の半径を求めよ。
この動画を見る 

新高1生へ 失敗しないたすきがけ因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$48x^2+5x-18$
$(ax+b)(cx+d)$
この動画を見る 
PAGE TOP