大学入試問題#26 東京理科大学(2021) 数列 - 質問解決D.B.(データベース)

大学入試問題#26 東京理科大学(2021) 数列

問題文全文(内容文):
$a_1=\displaystyle \frac{1}{12}$
$\displaystyle \frac{1}{a_{n+1}}=\displaystyle \frac{1}{a_n}+4n+8$
で定まる数列$\{a_n\}$において$\displaystyle \sum_{n=1}^\infty\ a_n$を求めよ

出典:2021年東京理科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{12}$
$\displaystyle \frac{1}{a_{n+1}}=\displaystyle \frac{1}{a_n}+4n+8$
で定まる数列$\{a_n\}$において$\displaystyle \sum_{n=1}^\infty\ a_n$を求めよ

出典:2021年東京理科大学 入試問題
投稿日:2021.10.05

<関連動画>

数学「大学入試良問集」【17−3① 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{1}{2}a_n+\displaystyle \frac{1}{a_n}$ $n=1,2,3,・・・$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \sqrt{ 2 }(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\sqrt{ 2 } \lt \displaystyle \frac{1}{2}(a_n-\sqrt{ 2 })(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

大学入試問題#311 杏林大学医学部(2010) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sqrt{ \cos\ 5x }-\sqrt{ \cos\ 3x }}{x^2}$

出典:2010年杏林大学医学部 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第1問(1)〜指数法則を使った計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(1)式$3(x+5)^{-\frac{5}{2}}$ の値は、$x$=$0$ のとき $\boxed{\ \ ア\ \ }$ であり、$x$=$4$ のとき $\boxed{\ \ イ\ \ }$ である。
この動画を見る 

#会津大学#不定積分#ますただ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x}{(e^x-1)(e^x+1)} dx$

会津大学
この動画を見る 

福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP