2020年度第4回K塾記述高2模試全問解説 #shorts #K塾模試 #りすうこべつチャンネル - 質問解決D.B.(データベース)

2020年度第4回K塾記述高2模試全問解説 #shorts #K塾模試 #りすうこべつチャンネル

問題文全文(内容文):
2020年度第4回K塾記述高2模試全問解説してみた.
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年度第4回K塾記述高2模試全問解説してみた.
投稿日:2022.11.17

<関連動画>

予備校講師のストライキはありなのか【賛否両論大揉め中】

アイキャッチ画像
単元: #大学入試過去問(数学)#情報Ⅰ(高校生)#全統模試(河合塾)#英語(高校生)#大学入試過去問(英語)#全統模試(河合塾)#数学(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: Morite2 English Channel
問題文全文(内容文):
緊急速報!予備校業界を揺るがすストライキ騒動で、人気講師が炎上する事態に!

YouTubeチャンネル「Morite2 English Channel」で、河合塾講師による異例のストライキに関する動画が投稿され、大きな波紋を呼んでいる。今回の騒動では、人気予備校講師である荻野(おぎの)先生が、SNS(X)へのある投稿をきっかけに「炎上」してしまった!

荻野先生は、「生徒に迷惑をかけたらダメ」という、予備校講師や生徒の立場からすれば当然とも言える意見を投稿した。しかしこれに対し、多くの社会人や労働者の目線を持つ人々から、「ストライキは迷惑をかけなきゃ意味がない」といった批判が殺到したのだ。ストライキは本来、労働者の権利であり、雇用主に圧力をかけるために消費者側に迷惑がかかるのが目的だという考え方だ。

これは、教育業界の「予備校講師目線」と、一般的な「労働者目線」という、全く異なる立場の意見が激しく衝突した結果だ。教育業界では、ストライキはすべきではないという観念があるため、そもそもストライキを考えたこともない講師が多い。

今回のストライキは、ベテラン講師のコマ単価が長年変わらず、若手講師の賃金も低いという労働問題が背景にある。しかし、ベテラン講師から見て「安い」と感じる年収(500〜600万円程度)でも、若手から見れば「高い」と感じられるため、世代間で意見の対立が生まれている。

ストライキをした講師は、後輩の若い世代のためにも声を上げている可能性がある。しかし、予備校講師は業務委託契約が多く、会社員と違って簡単に契約を切られるリスクがあるため、ストライキをするにはそれなりの覚悟が必要だと指摘されている。

森鉄先生は、荻野先生と同じく「自分ならストライキはしない」としつつも、「する権利はある」という見解を示している。日本では、人に迷惑をかけないことを前提とする文化があるため、今回の行動は「日本の文化を逸脱した」と捉える人もいるのではないかと分析されている。

このストライキ論争は、「日本の予備校講師は労働者なのか?」「教育にストライキは許されるのか?」という根本的な問題を投げかけている。

この激しい議論の行方から、目が離せない!
この動画を見る 

【数Ⅱ】 微分法と積分法:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
この動画を見る 

【数学】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問1_小問集合 (※(3)問題文に訂正あり)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$(x+y+2)^2$を展開せよ。
(2)$\dfrac{x^2-2x}{x^2+4x+3}\times\dfrac{2x+2}{x-2}$を計算せよ。
(3)2次関数$y=2x^2-8x+9 (0\leqq x\leqq 1)$における最小値を求めよ。
(4)iを虚数単位とする。$\dfrac{2+i}{1-3i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=3, BC=4\sqrt2, CA=5$である三角形ABCにおいて、$\cos\angle ABC$を求めよ。また、三 角形ABCの面積を求めよ。
(6)男子6人、女子4人の合計10人から3人を選ぶとき、選び方は全部で何通りか。 また、そのうち、女子が少なくとも1人含まれるような選び方は何通りか。
この動画を見る 

【数A】整数の性質:高3 5月K塾共通テスト 数学IA第4問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)168を素因数分解すると 168=(ア)^(イ)×3×(ウ) である。
よって、168の正の約数の個数は(エオ)個であり、AB=168かつ3≦A<Bを満たすA,Bの組は、全部で(カ)個である。
(2)正の整数nは正の約数の個数が6個であり、正の約数の総和が168であるとする。このような正の整数nのうち、異なる2つの素因数を持つものを求めよう。
nは異なる素数p,qを用いて、n=p^(キ)・q と表せる。
このとき、nの正の約数の総和は[ク]であるから、p=(ケ) であり、n=(コサ) である。

[ク]の解答群
0: (p+p²)q
1: (1+p+p²)q
2: (p+p²)(1+q)
3: (1+p+p²)(1+q)
4: (p+p²+p³)q
5: (1+p+p²+p³)q
6: (p+p²+p³)(1+q)
7: (1+p+p²+p³)(1+q)

(3)正の整数mは正の約数の個数が12個であり、正の約数の総和が624であるとする。このような正の整数mのうち、異なる3つの素因数を持つものは m=(シスセ) である。
この動画を見る 

【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試(※大問4(1)(ii)の答えに訂正あり)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x^2+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$をa+bi (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。

大問2-1:2次関数
実数xについての2つの不等式 $ax^2+2ax-2a+1\leqq 0$・・・①
$\vert x-2\vert \leqq 1$・・・② がある。
ただし、aは0でない実数の定数とする。
(1)$a=-1$のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。

大問2-2:図形と計量
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。

大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。

大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)$z=0,1,2,3,4,5,6,7,8,9,10$について、$2^z$を7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 $7x=2^z+3$・・・① を満たしている。$0\leqq z\leqq 10$のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 $(4x+3y)(x-y)=2^z$・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。

大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。

大問6:三角関数
$\theta$の関数 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(\theta-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれを$\sin\theta、\cos\theta$を用いて表せ。
(2)(i)f($\theta$)を$(\sin\theta-p)(\cos\theta-q) $(p,qは定数)の形で表せ。$ (ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq\theta\lt 2\pi$において解け。
(3)θの方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。

大問7:ベクトル
三角形OABがあり、$OA=2,OB=1,\angle AOB=120°$である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。また$OB=a,OB=b$とする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)$OH=kOD$(kは実数)と表される点Hがある。$CT⊥OD$となるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを$\angle AOD=\angle POD$となるようにとる。OPをa,bを用いて表せ。
この動画を見る 
PAGE TOP