【高校数学】組合せの例題~最低でもこれはできるように~ 1-10.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】組合せの例題~最低でもこれはできるように~ 1-10.5【数学A】

問題文全文(内容文):
(1)正六角形の6個の頂点のうち3点を結んで三角形を作るとき、
  三角形は何個作れるか。

(2)6本の平行線と、それらに交わる7本の平行線によってできる
  平行四辺形は何個か。

(3)7人を次のようにする方法は何通りあるか。
  (a)部屋A、B、Cに2人ずつ入れ、部屋Dに1人入れる。
  (b)2人,2人,2人,1人の4組に分ける
チャプター:

00:00 はじまり

00:34 問題出題

00:50 1問目の解説

02:27 2問目の解説

04:40 3問目(1)の解説

06:23 3問目(2)の解説

08:35 まとめだよ

08:55 問題と答え

単元: #数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)正六角形の6個の頂点のうち3点を結んで三角形を作るとき、
  三角形は何個作れるか。

(2)6本の平行線と、それらに交わる7本の平行線によってできる
  平行四辺形は何個か。

(3)7人を次のようにする方法は何通りあるか。
  (a)部屋A、B、Cに2人ずつ入れ、部屋Dに1人入れる。
  (b)2人,2人,2人,1人の4組に分ける
投稿日:2020.06.11

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(2)〜高次式の因数分解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)整式$x^5+x^4+x^3+x^2+x+1$は、整数を係数とし、次数が1以上で、
かつ最高次の項の係数が1であるような3つの整式$\boxed{\ \ イ\ \ },\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ }$の積に
因数分解せよ。

2022慶應義塾大学医学部過去問
この動画を見る 

放物線と比  大阪桐蔭

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数Ⅱ#2次関数#三角関数#三角関数とグラフ#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Rの座標は?
*図は動画内参照

大阪桐蔭高等学校
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(1)〜2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)次の2次方程式において,1つの解が$x=\dfrac{3}{2}-i$であるとき,
実数$a,b$の値を求めよ.ただし,$i$は虚数単位とする.
$-x^2+ax+b=0$

2021中央大経済学部過去問
この動画を見る 

【数I】集合と命題:条件の否定:否定は○○“じゃない”

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
かつ、または、すべて(任意)、あるの否定。
文字はすべて実数とする。次の条件の否定を述べよ。
(1)x>0かつy≦0 
(2)x≧2またはx<-3
(3)a=b=c=0
この動画を見る 

【数Ⅰ】【集合と論証】真偽の調べ方 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a,b$は実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$|a+1|≧1$である。
(3)$ab$が有理数であるならば、$a,b$はともに有理数である。
(4)$a+b, ab$がともに有理数ならば、$a,b$はともに有理数である。

全体集合を$U$とし、条件$p,q$を満たす全体の集合を、それぞれ$P,Q$とする。
命題$\overline{p}⇒q$が真であるとき、$P,Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$\overline{Q}⊂P$
④$P⊂\overline{Q}$
⑤$P∪\overline{Q}=P$
⑥$P∪\overline{Q}=\overline{Q}$
⑦$P∩Q=\varnothing$
⑧$P∪Q=U$
この動画を見る 
PAGE TOP