【高校受験対策】数学-死守45 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守45

問題文全文(内容文):
高校受験対策・死守45

①$-5+2$を計算しなさい。

②$(x+2)^2$を展開しなさい。

③$y$は$x$に反比例し、比例定数は 3である。
$x$と$y$の関係を式に表しなさい。

④正五角形の内角の和は何度か、求めなさい。

⑤二次方程式 $2x^2-x=0$を解きなさい。

⑥となる自然数$a$をすべて求めなさい。

⑦直線$6x-y=1$0と$x$軸との交点をPとする。
直線$ax-2y=15$が点Pを通るとき、$a$の値を求めなさい。

⑧500円、100円、50円、10円の硬質が1枚ずつある。
この4枚の硬貨を同時に投げるとき、表が出た硬貨の合計金額が、600円以上になる確率を求めなさい。
ただしすべての硬貨の表と裏の出かたは同様に確からしいものとする。

⑨右の図は円錐の展開図です。
この展開図を組み立てたとき、側面となるおうぎ形は半径が16cm、中心角が135°である。
底面となる円の半径を求めなさい。

⑩右の表は、生徒100人の通学時間を度数分布表に表したものである。
$a:b=4:3$であるとき、中央値が含まれる階級の相対度数を求めなさい。
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守45

①$-5+2$を計算しなさい。

②$(x+2)^2$を展開しなさい。

③$y$は$x$に反比例し、比例定数は 3である。
$x$と$y$の関係を式に表しなさい。

④正五角形の内角の和は何度か、求めなさい。

⑤二次方程式 $2x^2-x=0$を解きなさい。

⑥となる自然数$a$をすべて求めなさい。

⑦直線$6x-y=1$0と$x$軸との交点をPとする。
直線$ax-2y=15$が点Pを通るとき、$a$の値を求めなさい。

⑧500円、100円、50円、10円の硬質が1枚ずつある。
この4枚の硬貨を同時に投げるとき、表が出た硬貨の合計金額が、600円以上になる確率を求めなさい。
ただしすべての硬貨の表と裏の出かたは同様に確からしいものとする。

⑨右の図は円錐の展開図です。
この展開図を組み立てたとき、側面となるおうぎ形は半径が16cm、中心角が135°である。
底面となる円の半径を求めなさい。

⑩右の表は、生徒100人の通学時間を度数分布表に表したものである。
$a:b=4:3$であるとき、中央値が含まれる階級の相対度数を求めなさい。
投稿日:2019.12.15

<関連動画>

15秒で計算の基礎と対人交渉を学ぶ動画!~全国入試問題解法 #Shorts #数学

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$a=2,b=-\dfrac{1}{3}$のとき,
$ \left(-\dfrac{3b^2}{a}\right)\div \left(-\dfrac{1}{2}ab^2\right)^2\times \dfrac{2}{9}a^3b$の値を求めよ.
この動画を見る 

正しいものを選べ!!大阪星光学院

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正しいものをすべて選べ
①4辺の長さが等しい四角形をひし形という
②4つの角の大きさが等しい四角形を長方形という
③6辺の長さが等しい六角形を正六角形という
④6つの角の大きさが等しい六角形を正六角形という

大阪星光学院高等学校
この動画を見る 

円 角の和 大阪桐蔭

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x +\angle y = ?$
*図は動画内参照

大阪桐蔭高等学校
この動画を見る 

気付けば一瞬!!普連土学園

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

普連土学園高等学校
この動画を見る 

【正体見たり…!】平方根:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 慶応義塾高等学校
$(\displaystyle \frac{\sqrt{ 2023 }+\sqrt{ 2022 }}{\sqrt{ 2 }})^2-(\sqrt{ 2023 }+\sqrt{ 2022 }) \times (\sqrt{ 2022 }-\sqrt{ 63 })+(\displaystyle \frac{\sqrt{ 63 }-\sqrt{ 2022 }}{\sqrt{ 2 }})^2$
を計算すると▭である。
この動画を見る 
PAGE TOP