2024年共通テスト数学1A講評【予想平均点・傾向と対策】 - 質問解決D.B.(データベース)

2024年共通テスト数学1A講評【予想平均点・傾向と対策】

問題文全文(内容文):
上岡先生が2024年共通テスト数学1Aを講評します。

復習の際の参考にしましょう!
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
上岡先生が2024年共通テスト数学1Aを講評します。

復習の際の参考にしましょう!
投稿日:2024.01.15

<関連動画>

共通テスト2021年詳しい解説〜共通テスト2021年2B第3問〜統計

アイキャッチ画像
単元: #数学(中学生)#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
Q高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そこで、
Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の
生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この
1週間に全く読書をしなかった生徒が36人であり、100人の生徒のこの1週間の
読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時間
の母平均を$m$, 母標準偏差を150とする。

(1)全く読書をしなかった生徒の母比率を0.5とする。このとき、100人の無作為標本の
うちで全く読書をしなかった生徒の数を表す確率変数をXとすると、$X$は$\boxed{\boxed{\ \ ア\ \ }}$
に従う。また、Xの平均(期待値)は$\boxed{\ \ イウ\ \ }$、標準偏差は$\boxed{\ \ エ\ \ }$である。

$\boxed{\boxed{\ \ ア\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪正規分布$N(0,1)$
①二項分布$B(0,1)$
②正規分布$N(100,0.5)$
③二項分布$B(100,0.5)$
④正規分布$N(100,36)$
⑤二項分布$B(100,36)$


(2)標本の大きさ100は十分に大きいので、100人のうち全く読書をしなかった生徒
の数は近似的に正規分布に従う。
全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかった生徒
が36人以下となる確率を$p_5$とおく。$p_5$の近似値を求めると、$p_5=\boxed{\boxed{\ \ オ\ \ }}$である。
また、全く読書をしなかった生徒の母比率を0.4とするとき、全く読書をしなかった
生徒が36人以下となる確率を$p_4$とおくと、$\boxed{\boxed{\ \ カ\ \ }}$である。

$\boxed{\boxed{\ \ オ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪$0.001$
①$0.003$
②$0.026$
③$0.050$
④$0.133$
⑤$0.497$

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$p_4 \lt p_5$
①$p_4 = p_5$
②$p_4 \gt p_5$


(3)1週間の読書時間の母平均$m$に対する信頼度95%の信頼区間を
$C_1 \leqq m \leqq C_2$とする。標本の大きさ100は十分大きいことと、1週間
の読書時間の標本平均が204、母標準偏差が150であることを用いると、
$C_1+C_2=\boxed{\ \ キクケ\ \ }$、$C_2-C_1=\boxed{\ \ コサ\ \ }.\boxed{\ \ シ\ \ }$であることがわかる。
また、母平均$m$と$C_1,C_2$については$\boxed{\boxed{\ \ ス\ \ }}$。

$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪$C_1 \leqq m \leqq C_2$が必ず成り立つ
①$m \leqq C_2$は必ず成り立つが、$C_1 \leqq m$が成り立つとは限らない
②$C_1 \leqq m$は必ず成り立つが、$m \leqq C_2$が成り立つとは限らない
③$C_1 \leqq m$も$m \leqq C_2$も成り立つとは限らない


(4)Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が
調査をしていることを知らずに、図書委員会として校長先生と同様の調査を
独自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であり、
対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その調査における
全く読書をしなかった生徒の数を$n$とする。
校長先生の調査結果によると全く読書をしなかった生徒は36人であり、
$\boxed{\boxed{\ \ セ\ \ }}$。

$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪$n$は必ず36に等しい
①$n$は必ず36未満である
②$n$は必ず36より大きい
③$n$と36との大小はわからない


(5)(4)の図書委員会が行った調査結果による母平均$m$に対する信頼度95%の
信頼区間を$D_1 \leqq m \leqq D_2$、校長先生が行った調査結果による母平均$m$に対す
る信頼度95%の信頼区間を(3)の$C_1 \leqq m \leqq C_2$とする。ただし、母集団は同一
であり、1週間の読書時間の母標準偏差は150とする。
このとき、次の⓪~⑤のうち、正しいものは$\boxed{\boxed{\ \ ソ\ \ }}と\boxed{\boxed{\ \ タ\ \ }}$である。

$\boxed{\boxed{\ \ ソ\ \ }}$, $\boxed{\boxed{\ \ タ\ \ }}$の解答群(解答の順序は問わない。)
⓪$C_1=D_1とC_2=D_2$が必ず成り立つ。
①$C_1 \lt D_2$または$D_1 \lt C_2$のどちらか一方のみが成り立つ。
②$D_2 \lt C_1$または$C_2 \lt D_1$となる場合もある。
③$C_2-C_1 \gt D_2-D_1$が必ず成り立つ。
④$C_2-C_1 = D_2-D_1$が必ず成り立つ。
⑤$C_2-C_1 \lt D_2-D_1$が必ず成り立つ。

2021共通テスト過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第5問〜平面幾何

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、$AB=3$, $BC=4$, $AC=5$とする。
$\angle BAC$の二等分線と辺$BC$との交点を$D$とすると
$BD=\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$, $AD=\displaystyle \frac{\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}}{\boxed{\ \ オ\ \ }}$
である。
また、$\angle BAC$の二等分線と$\triangle ABC$の外接円$O$との交点で点$A$とは異なる
点を$E$とする。$\triangle AEC$に着目すると
$AE=\boxed{\ \ カ\ \ }\sqrt{\boxed{\ \ キ\ \ }}$
である。
$\triangle ABC$の2辺$AB$と$AC$の両方に接し、外接円$O$に内接する円の中心を
$P$とする。円$P$の半径を$r$とする。さらに、円$P$と外接円$O$との接点を
$F$とし、直線$PF$と外接円$O$との交点で点$F$とは異なる点を$G$とする。
このとき
$AP=\sqrt{\boxed{\ \ ク\ \ }}\ r$, $PG=\boxed{\ \ ケ\ \ }-r$
と表せる。したがって、方べきの定理により$r=\displaystyle \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。

$\triangle ABC$の内心を$Q$とする。内接円$Q$の半径は$\boxed{\ \ シ\ \ }$で、$AQ=\sqrt{\boxed{\ \ ス\ \ }}$
である。また、円$P$と辺$AB$との接点を$H$とすると、$AH=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。
以上から、点$H$に関する次の$(\textrm{a}),(\textrm{b})$の正誤の組合せとして正しいもの
は$\boxed{\boxed{\ \ タ\ \ }}$である。


$(\textrm{a})$点$H$は3点$B,D,Q$を通る円の周上にある。
$(\textrm{b})$点$H$は3点$B,E,Q$を通る円の周上にある。

$\boxed{\boxed{\ \ タ\ \ }}$の解答群
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

2024共通テスト数学 あけましておめでとう

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ

2024共通テスト過去問
この動画を見る 

2023年共通テスト数学1A講評【易化】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
2023年共通テスト数学1Aを講評します。

各問題の解き方や、注意すべき点を確認しましょう。

復習の参考にしましょう!
この動画を見る 

共通テストまで、あと90日。受験生がやるべきこと3選。

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#化学#生物#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#その他#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#勉強法#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テストまで、あと90日。受験生がやるべきこと3選。
この動画を見る 
PAGE TOP