2024年共通テスト数学1A講評【予想平均点・傾向と対策】 - 質問解決D.B.(データベース)

2024年共通テスト数学1A講評【予想平均点・傾向と対策】

問題文全文(内容文):
上岡先生が2024年共通テスト数学1Aを講評します。

復習の際の参考にしましょう!
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
上岡先生が2024年共通テスト数学1Aを講評します。

復習の際の参考にしましょう!
投稿日:2024.01.15

<関連動画>

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第4問〜数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
[1]自然数$n$に対して、$S_n=5^n-1$とする。さらに、数列$\left\{a_n\right\}$の初項から
第$n$項までの和が$S_n$であるとする。このとき、$a_1=\boxed{\ \ ア\ \ }$である。また
$n \geqq 2$のとき
$a_n=\boxed{\ \ イ\ \ }・\boxed{\ \ ウ\ \ }^{n-1}$
である。この式は$n=1$の時にも成り立つ。
上で求めたことから、すべての自然数$n$に対して
$\sum_{k=1}^n\displaystyle \frac{1}{a_k}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}\left(1-\boxed{\ \ キ\ \ }^{-n}\right)$
が成り立つことが分かる。

[2]太郎さんは和室の畳を見て、畳の敷き方が何通りあるかに興味を持った。
ちょうど手元にタイルがあったので、畳をタイルに置き換えて、
数学的に考えることにした。
縦の長さが1、横の長さが2の長方形のタイルが多数ある。
それらを縦か横の向きに、隙間も重なりもなく敷き詰めるとき、
その敷き詰め方をタイルの「配置」と呼ぶ。

上の図(※動画参照)のように、縦の長さが3,横の長さが$2n$の長方形を$R_n$とする。
$3n$枚のタイルを用いた$R_n$内の配置の総数を$r_n$とする。
$n=1$のときは、下の図(※動画参照)のように$r_1=3$である。

また、$n=2n4$ときは、下の図(※動画参照)のように$r_2=11$である。

(1)太郎さんは次のような図形$T_n$内の配置を考えた。
$(3n+1)$枚のタイルを用いた$T_n$内の配置の総数を$t_n$とする。$n=1$
のときは、$t_1=\boxed{\ \ ク\ \ }$である。
さらに、太郎さんは$T_n$内の配置について、右下隅のタイルに注目して
次のような図(※動画参照)をかいて考えた。

この図(※動画参照)から、2以上の自然数$n$に対して
$t_n=Ar_n+Bt_{n-1}$
が成り立つことが分かる。ただし、$A=\boxed{\ \ ケ\ \ }, B=\boxed{\ \ コ\ \ }$である。
以上から、$t_2=\boxed{\ \ サシ\ \ }$であることが分かる。
同様に、$R_n$の右下隅のタイルに注目して次のような図(※動画参照)をかいて考えた。

この図(※動画参照)から、2以上の自然数$n$に対して
$r_n=Cr_{n-1}+Dt_{n-1}$
が成り立つことが分かる。ただし、$C=\boxed{\ \ ス\ \ }, D=\boxed{\ \ セ\ \ }$である。

(2)畳を縦の長さが1, 横の長さが2の長方形と見なす。縦の長さが3, 横の長さが6
の長方形の部屋に畳を敷き詰めるとき、敷き詰め方の総数は$\boxed{\ \ ソタ\ \ }$である。
また、縦の長さが、横の長さがの長方形の部屋に畳を敷き詰めるとき、
敷き詰め方の総数は$\boxed{\ \ チツテ\ \ }$である。

2021共通テスト過去問
この動画を見る 

【数A】確率:高3 5月K塾共通テスト 数学IA第3問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る 

【解答速報・全問解説】2025年 大学入学共通テスト 数学ⅠA解答速報

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年1月19日(日)に実施された、2025年大学入学共通テストの数学ⅠAの解答速報です。(LIVEで行った解答速報の抜粋版です)
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。

指導講師:AKIYAMA、理数大明神、烈's study!、ゆう☆たろう
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題4。数列の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい
る。歩行者と自転車の動きについて、数学的に考えてみよう。
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。
$x=a_n$を自転車がn回目に自宅を出発する時刻とし、$y=b_n$をそのときの歩
行者の位置とする。

(1) 花子さんと太郎さんは、数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項を求めるために、歩行者
と自転車について、時刻において位置yにいることをOを原点とする座標
平面上の点(x,y)で表すことにした。
$a_1=2,b_1=2$により、自転車が最初に自宅を出発するときの時刻と自転
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき
の時刻と位置を表す点の座標は$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$である。よって
$a_2=\boxed{\ \ イ\ \ }, b_2=\boxed{\ \ ウ\ \ }$
である。

花子:数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項について考える前に、
$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$の求め方について整理してみようか。
太郎:花子さんはどうやって求めたの?
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと
を利用したよ。
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を
計算して求めることもできるね。
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標
は$(a_n,0)$であり、そのときの時刻と歩行者の位置を表す点の座標は
$(a_n,b_n)$である。よって、n回目に自宅を出発した自転車が次に歩行者に
追いつくときの時刻と位置を表す点の座標は、$a_n,b_n$を用いて、
$(\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ })$と表せる。

$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$a_n$ ①$b_n$ ②$2a_n$
③$a_n+b_n$ ④$2b_n$ ⑤$3a_n$
⑥$2a_n+b_n$ ⑦$a_n+2b_n$ ⑧$3b_n$

以上から、数列$\left\{a_n\right\}, \left\{b_n\right\}$について、自然数nに対して、関係式
$a_{n+1}=a_n+\boxed{\ \ カ\ \ }\ b_n+\boxed{\ \ キ\ \ } \ldots①$
$b_{n+1}=3b_n+\boxed{\ \ ク\ \ } \ldots②$
が成り立つことが分かる。まず、$b_1=2$と②から
$b_n=\boxed{\ \ ケ\ \ } (n=1,2,3,\ldots)$
を得る。この結果と、$a_1=2$および1から
$a_n=\boxed{\ \ コ\ \ } (n=1,2,3,\ldots)$
がわかる。

$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$3^{n-1}+1$ ①$\frac{1}{2}・3^n+\frac{1}{2}$
②$3^{n-1}+n$ ③$\frac{1}{2}・3^n+n-\frac{1}{2}$
④$3^{n-1}+n^2$ ⑤$\frac{1}{2}・3^n+n^2-\frac{1}{2}$
⑥$2・3^{n-1}$ ⑦$\frac{5}{2}・3^{n-1}-\frac{1}{2}$
⑧$2・3^{n-1}+n-1$ ⑨$\frac{5}{2}・3^{n-1}+n-\frac{3}{2}$
ⓐ$2・3^{n-1}+n^2-1$ ⓑ$\frac{5}{2}・3^{n-1}+n^2-\frac{3}{2}$

(2)歩行者が$y=300$の位置に到着するときまでに、自転車が装甲車に追いつく
回数は$\boxed{\ \ サ\ \ }$回である。また、$\boxed{\ \ サ\ \ }$回目に自転車が歩行者に追いつく
時刻は、$x=\boxed{\ \ シスセ\ \ }$である。

2022共通テスト数学過去問
この動画を見る 

【共通テスト】数学IA 第2問でスラスラ解けるテクニック、解説します(2023年本試)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第2問で解けるテクニック、解説動画です
この動画を見る 
PAGE TOP