中2数学「1次関数のグラフの書き方①」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「1次関数のグラフの書き方①」【毎日配信】

問題文全文(内容文):
中2~1次関数のグラフの書き方①~

例題次の1次関数のグラフを書きなさい。
(1) y = 2x - 3 (2) y = - 3/4 x + 2
(3) x/2 - y/3 = 1 (4) X-3y=7
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~1次関数のグラフの書き方①~

例題次の1次関数のグラフを書きなさい。
(1) y = 2x - 3 (2) y = - 3/4 x + 2
(3) x/2 - y/3 = 1 (4) X-3y=7
投稿日:2022.06.29

<関連動画>

高等学校入学試験予想問題:近畿大学附属高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.

$ \boxed{2}$

図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.

$ \boxed{3}$

図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
この動画を見る 

【未知なるものは…!】文章題:明治学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治学院高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
所持金で$ \color{red}{プリンを8個}$買うと$ \color{red}{220円}$余り,$ \color{red}{10個}$買うと合計金額から$ \color{blue}{1割引き}$になるので$ \color{red}{60円}$余る.

このときの$ \color{red}{所持金}$はいくらか?

明治学院高校過去問
この動画を見る 

面積比 早稲田佐賀 動画内誘導あり 2022入試問題解説3問目

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABC=Sとする
(1)△GDPをSで表せ
(2)AD,BE,CFを3辺にもつ三角形の面積をSで表せ。
*図は動画内参照

2022早稲田佐賀高等学校(改)
この動画を見る 

5で割った余り 法政大学高校

アイキャッチ画像
単元: #数学(中学生)#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#法政大学高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
$2023^3+2024^4$
を5で割ったときの余りは?
この動画を見る 

【受験対策】  数学-図形①

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、長方形ABCDの辺CD上に点Eをとり、頂点B、DからAEにそれぞれ垂線BF、DGをひきます。
また、DFの延長と辺ABとの交点をHとします。

①$AB=AD,BF12cm$、$DG=4cm$のとき、四角形BFDGの面積は?

②$\angle ABF=\angle FDG、\angle AHF=\angle DFG$のとき、
$AG:AE$を、最も簡単な整数の比で表そう。
※図は動画内参照
この動画を見る 
PAGE TOP