【12/28】中3冬特訓4日目 - 質問解決D.B.(データベース)

【12/28】中3冬特訓4日目

問題文全文(内容文):
①$x^3+x^2-x-1$を因数分解しなさい。

➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。

③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。

④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^3+x^2-x-1$を因数分解しなさい。

➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。

③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。

④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
投稿日:2018.12.28

<関連動画>

三乗−三乗の因数分解の公式知らなくても解けるよ。慶應義塾高校の小問。

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a-b=3 \\
b= \frac{6}{a}
\end{array}
\right.
\end{eqnarray}
$
のとき$a^2+b^2=?$ $\quad$ $a^3-b^3=?$

慶應義塾高等学校
この動画を見る 

【数学】中3-7 因数分解②

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
$a^2+2ab+b^2=$①____
$a^2-2ab+b^2=$②____
$a^2-b^2=$③____
$x^2+(a+b)x+ab=$④____
⑤$x^2-81=$
⑥$x^2+6x+9=$
⑦$x^2-8x+16=$
⑧$x^2+5x+6=$
⑨$x^2-18x+81=$
⑩$x^2-x-12=$
⑪$x^2-25y^2=$
⑫$x^2+12xy+36y^2=$
⑬$x^2+10x+16=$
⑭$16x^2-9y^2=$
⑮$x^2-x-2=$
⑯$x^2+2x-15=$
この動画を見る 

2025灘高校最初の一問!!因数分解せよ

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
灘高校最初の一問!!
$x^4-106x^2+2025$
この動画を見る 

2023高校入試解説37問目 早稲田実業最初の一問 因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$(x+1)a^2 -2xa +x -1$

2023早稲田実業学校
この動画を見る 

【高校受験対策/数学】死守53

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53

①$2-(-9)$を計算せよ。

②$52a^2b \div (-4a)$を計算せよ。

③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。

④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。

⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。

⑥2次方程式$x^2-5x-3=0$を解きなさい。

⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。

⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。

⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。

⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る 
PAGE TOP