【数学】2024年度第2回高2記述模試全問解説 - 質問解決D.B.(データベース)

【数学】2024年度第2回高2記述模試全問解説

問題文全文(内容文):
大問1:小問集合
(1) x⁴-5x²+4を因数分解せよ。
(2) 多項式P(x)をx-2で割ると、商がx²+2x+4で、余りが3となるとき、P(x)を求めよ。
(3) kを実数の定数とする。2次関数 y=x²+4x+k の最小値が3であるとき、 kの値を求めよ。
(4) iを虚数単位とする。 i³(2+i) を a+bi (a, bは実数)の形で表せ。
(5) AB=5、BC=6、0°<∠ABC<90°,面積が6√6である三角形ABCにおいて、sin∠ABCの値とCAの長さを求めよ。
(6) 7個の数字1,2,3,4,5,6,7から、異なる3個を選び、それらを並べて3桁の整数を作る。このとき、3桁の整数は全部で何個あるか、また、3桁の偶数は何個あるか。

大問2-1:2次不等式
実数xについての2つの不等式
3x²-11x+6≤0...①
│x-a│<1...②
がある。ただし、aは実数の定数とする。
(1) ①を解け、
(2) a=2のとき、②を解け、
(3) ①かつ②を満たす整数xが、ちょうど2個存在するようなの値の範囲を求めよ。

大問2-2:図形と方程式
xy平面上に、
円C:x²+y²-4x-2y+3=0
直線l:x-2y+a=0
があり、Cの中心をA、半径をrとする。ただし、aは正の定数とする。
(1) Aの座標との値を求めよ。
(2) Cとしが異なる2点で交わるようなの値の範囲を求めよ。
(3) (2)のとき、Cとの異なる2つの交点をP, Qとする、が(2)で求めた範囲を動くとき、三角形APQの面積が最大となるようなaの値を求めよ。

大問3:高次方程式
xの3次式
f(x)=x³-(k+2)x²+(k²+2k-2)x-k³+2k
と、xの3次方程式
f(x)=0...(*)
がある。ただし、kは正の定数とする。
(1) f(k)を求めよ。
(2) k=1のとき、(*)を解け。
(3) (*)が異なる3つの実数解をもつようなんの値の範囲を求めよ。また、そのとき、(*)を解け。
(4) 実数xに対して、x以下の最大の整数を[x]と表す。例えば、[3.5]=3、[2]=2である、(3)のとき、次の条件(#)が成り立つようなkの値の範囲を求めよ。
条件(#): (*)の異なる2解α、βで[α]=[β]を満たすものが存在する。

大問4:確率
数直線上に点Pがある。最初、Pは原点にあり、1枚のコインを1回投げるごとに、表が出たときはPを正の方向に1だけ動かし、裏が出たときはPを負の方向に1だけ動かす。また、Pを初めて正または負の方向に1だけ動かした後、Pが原点に戻るたびに1点を獲得するものとする。
(1) コインを2回投げたとき、Pが原点にある確率を求めよ。
(2) コインを4回投げたとき、
(i) Pが原点にある確率を求めよ。
(ii) 4回目に初めて1点を獲得する確率を求めよ。
(iii) 獲得する点数の合計の期待値を求めよ。
(3) コインを6回投げたとき、1点も獲得しない確率を求めよ。


大問5:三角関数
kを実数の定数とする。以下のような、θの方程式①との不等式②がある。
tan=k...①
2cosθ+1≧0...②
(1) k=1のとき、0≦θ<2πにおいて、①を解け。
(2) 0≦θ<2πにおいて、②を解け。
(3) 0≦θ<2πにおける①の解は2個ある。その2個の解の和が4π/3となるようなんの値を求めよ。
(4) (2)で求めたθの値の範囲における①の解が、2個あるときを考える。その2個の解をα, β(α<β) とする。
(i) kのとり得る値の範囲を求めよ。
(ii) α+β≧7π/4となるようなkの値の範囲を求めよ。

大問6:数列
等差数列{a_n} (n=1,2,3,...) があり、
a₄=28、a₁₀=76
である。また、数列{b_n} (n=1,2,3,...)があり、その一般項は、
b_n=n²-n+2
である。
(1) 数列{a_n}の一般項a_nを求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2) 数列{b_n}の階差数列を{c_n}(n=1,2,3,...) とするとき、数列{c_n}の一般項c_nを求めよ。
(3) (1), (2) で求めたS_n, c_nに対して、次の連立不等式を満たす整数x、yの組(x,y)の個数をA_n(n=1,2,3,...)とする。
1≦x≦c_n、1≦y≦S_n、x²≦y≦4x²
(i) A₂を求めよ。
(ii) A_nを求めよ。
チャプター:

0:00 オープニング
0:05 大問1:小問集合
7:14 大問2-1:2次不等式
12:27 大問2-2:図形と方程式
17:20 大問3:高次方程式
26:20 大問4:確率
37:03 大問5:三角関数
43:30 大問6:数列
52:51 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1) x⁴-5x²+4を因数分解せよ。
(2) 多項式P(x)をx-2で割ると、商がx²+2x+4で、余りが3となるとき、P(x)を求めよ。
(3) kを実数の定数とする。2次関数 y=x²+4x+k の最小値が3であるとき、 kの値を求めよ。
(4) iを虚数単位とする。 i³(2+i) を a+bi (a, bは実数)の形で表せ。
(5) AB=5、BC=6、0°<∠ABC<90°,面積が6√6である三角形ABCにおいて、sin∠ABCの値とCAの長さを求めよ。
(6) 7個の数字1,2,3,4,5,6,7から、異なる3個を選び、それらを並べて3桁の整数を作る。このとき、3桁の整数は全部で何個あるか、また、3桁の偶数は何個あるか。

大問2-1:2次不等式
実数xについての2つの不等式
3x²-11x+6≤0...①
│x-a│<1...②
がある。ただし、aは実数の定数とする。
(1) ①を解け、
(2) a=2のとき、②を解け、
(3) ①かつ②を満たす整数xが、ちょうど2個存在するようなの値の範囲を求めよ。

大問2-2:図形と方程式
xy平面上に、
円C:x²+y²-4x-2y+3=0
直線l:x-2y+a=0
があり、Cの中心をA、半径をrとする。ただし、aは正の定数とする。
(1) Aの座標との値を求めよ。
(2) Cとしが異なる2点で交わるようなの値の範囲を求めよ。
(3) (2)のとき、Cとの異なる2つの交点をP, Qとする、が(2)で求めた範囲を動くとき、三角形APQの面積が最大となるようなaの値を求めよ。

大問3:高次方程式
xの3次式
f(x)=x³-(k+2)x²+(k²+2k-2)x-k³+2k
と、xの3次方程式
f(x)=0...(*)
がある。ただし、kは正の定数とする。
(1) f(k)を求めよ。
(2) k=1のとき、(*)を解け。
(3) (*)が異なる3つの実数解をもつようなんの値の範囲を求めよ。また、そのとき、(*)を解け。
(4) 実数xに対して、x以下の最大の整数を[x]と表す。例えば、[3.5]=3、[2]=2である、(3)のとき、次の条件(#)が成り立つようなkの値の範囲を求めよ。
条件(#): (*)の異なる2解α、βで[α]=[β]を満たすものが存在する。

大問4:確率
数直線上に点Pがある。最初、Pは原点にあり、1枚のコインを1回投げるごとに、表が出たときはPを正の方向に1だけ動かし、裏が出たときはPを負の方向に1だけ動かす。また、Pを初めて正または負の方向に1だけ動かした後、Pが原点に戻るたびに1点を獲得するものとする。
(1) コインを2回投げたとき、Pが原点にある確率を求めよ。
(2) コインを4回投げたとき、
(i) Pが原点にある確率を求めよ。
(ii) 4回目に初めて1点を獲得する確率を求めよ。
(iii) 獲得する点数の合計の期待値を求めよ。
(3) コインを6回投げたとき、1点も獲得しない確率を求めよ。


大問5:三角関数
kを実数の定数とする。以下のような、θの方程式①との不等式②がある。
tan=k...①
2cosθ+1≧0...②
(1) k=1のとき、0≦θ<2πにおいて、①を解け。
(2) 0≦θ<2πにおいて、②を解け。
(3) 0≦θ<2πにおける①の解は2個ある。その2個の解の和が4π/3となるようなんの値を求めよ。
(4) (2)で求めたθの値の範囲における①の解が、2個あるときを考える。その2個の解をα, β(α<β) とする。
(i) kのとり得る値の範囲を求めよ。
(ii) α+β≧7π/4となるようなkの値の範囲を求めよ。

大問6:数列
等差数列{a_n} (n=1,2,3,...) があり、
a₄=28、a₁₀=76
である。また、数列{b_n} (n=1,2,3,...)があり、その一般項は、
b_n=n²-n+2
である。
(1) 数列{a_n}の一般項a_nを求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2) 数列{b_n}の階差数列を{c_n}(n=1,2,3,...) とするとき、数列{c_n}の一般項c_nを求めよ。
(3) (1), (2) で求めたS_n, c_nに対して、次の連立不等式を満たす整数x、yの組(x,y)の個数をA_n(n=1,2,3,...)とする。
1≦x≦c_n、1≦y≦S_n、x²≦y≦4x²
(i) A₂を求めよ。
(ii) A_nを求めよ。
投稿日:2026.01.27

<関連動画>

【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問5_式と証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
この動画を見る 

【数Ⅱ】三角関数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
この動画を見る 

【2018年5月K塾マーク】全教科概観~数学でとれなかったのは仕方ない?!~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学でとれなかったのは仕方ない?!
「2018年5月全統マーク」についてお話しています。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る 

【数C】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 
PAGE TOP