【今年も全国で類題が出るよ】図形:栃木県公立高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【今年も全国で類題が出るよ】図形:栃木県公立高等学校~全国入試問題解法

問題文全文(内容文):
$ \triangle ABC$は$AB=AC$の二等辺三角形である.
点$D$は辺$BA$の延長であり,$ \angle ACB=\angle ACD$である.
$ \triangle DBC \backsim \triangle DCA$であることを証明しなさい.

栃木県高校過去問
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$は$AB=AC$の二等辺三角形である.
点$D$は辺$BA$の延長であり,$ \angle ACB=\angle ACD$である.
$ \triangle DBC \backsim \triangle DCA$であることを証明しなさい.

栃木県高校過去問
投稿日:2022.12.06

<関連動画>

【中1 数学】中1-25 関係を表す式③

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎あるテーマパークの入場料は、
おとな$1$人が$x$円、子ども$1$人が$y$円です。
このとき、次の式はどんなことを表しているかな?
◎$2x+3y=21100$
おとな①___人分と子ども②___人分の 入場料が③______ 。

◎$x - y = 1300$
④___と___⑤の⑥___が$1300$円である。

◎$x + 2y \gt 10000$
おとな⑦___人分と子ども⑧___人分の入場料が⑨_________。

◎$x+2y \leqq 15000$
おとな⑩___人分と子ども⑪___人分の入場料が⑫___。
この動画を見る 

【高校受験対策】数学-死守38

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#2次方程式#1次関数#確率#2次関数#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守38

①$-7+5$を計算しなさい。

➁$\frac{3x-2}{5} \times10$を計算しなさい。

③$5ab^2 \div\frac{a}{3}$を計算しなさい。

④$(x+8)(x-6)$を計算しなさい。

⑤$25$の平方根を求めなさい。

⑥関数$y=\frac{a}{x}$のグラフが点$(6,-2)$を通るとき、$a$の値をを求めなさい。

⑦連立方程式を解きなさい。
$3x+y=-5$
$2x+3y=6$

⑧二次方程式を解きなさい。
$x^2+7x+1=0$

⑨右の図1で$\angle x$大きさを求めなさい。

⑩大小2つのさいころを同時に投げるとき、 2つとも同じ目が出る確率を求めなさい。

⑪右の図2において、点$A,B,C$は円$O$の周上の点である。
$\angle x$の大きさを求めなさい。

⑫左の図3のように、$y=ax^2(a\gt0)$のグラフ上 に2点$A,B$があり、$x$座標はそれぞれ$-6,4$である。
直線$AB$の傾きがであるとき、$a$の値を求めなさい。

この動画を見る 

【解答の迷いを捨てる3分間!】文字式:中央大学附属杉並高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 中央大学附属杉並高等学校

$(x+2)(y+2)=(x-2)(y-2)$
のとき
$(2x+\sqrt{ 5 })(2y+\sqrt{ 5 })+4x^2$
の値を求めなさい。
この動画を見る 

【式の形から見えるものもある!】一次方程式:愛知県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
一次方程式$5x-7=9(x-3)$を解け.

東京都高校過去問
この動画を見る 

【2分で理解!大切な考え方】空間図形:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
母線の長さが10,底面の円の半径が5の円錐に球が内接している.
球の半径は$\Box$である.

大阪星光高校過去問
この動画を見る 
PAGE TOP