福田の数学〜立教大学2023年理学部第2問〜ベクトルの共面条件と共線条件 - 質問解決D.B.(データベース)

福田の数学〜立教大学2023年理学部第2問〜ベクトルの共面条件と共線条件

問題文全文(内容文):
2 0<k1とする。座標空間内の四面体OABCについて、線分ACの中点をD、線分BCの中点をE、線分DEを1:2に内分する点をPとする。また、
線分OPをk:1-kに内分する点をQとし、RをCR=lCQを満たす点とする。
a=OA, b=OB, c=OCとおいたとき、次の問いに答えよ。
(1)OD, OE, OPa, b, cを用いて表せ。
(2)ORa, b, c, k, lを用いて表せ。
(3)Rが平面OAB上にあるとき、lkを用いて表せ。
(4)線分OAの中点をF、線分OBの中点をGとする。Rが線分FG上にあるときのkの値を求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
2 0<k1とする。座標空間内の四面体OABCについて、線分ACの中点をD、線分BCの中点をE、線分DEを1:2に内分する点をPとする。また、
線分OPをk:1-kに内分する点をQとし、RをCR=lCQを満たす点とする。
a=OA, b=OB, c=OCとおいたとき、次の問いに答えよ。
(1)OD, OE, OPa, b, cを用いて表せ。
(2)ORa, b, c, k, lを用いて表せ。
(3)Rが平面OAB上にあるとき、lkを用いて表せ。
(4)線分OAの中点をF、線分OBの中点をGとする。Rが線分FG上にあるときのkの値を求めよ。
投稿日:2023.07.09

<関連動画>

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
5
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形OA1B1C1A2を考える。

A1C1B1=    °C1A1A2=    °となることから、A1A2
B1C1は平行である。ゆえに
A1A2=    B1C1
であるから
B1C1=1    A1A2=1    (OA2OA1)
また、OA1A2B1は平行で、さらに、OA2A1C1も平行であることから
B1C1=B1A2+A2O+OA1+A1C1=    OA1OA2+OA1+    OA2=(        )(OA2OA1)
となる。したがって
1    =        
が成り立つ。a>0に注意してこれを解くと、a=1+52を得る。


(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。

OA1B1C1A2に着目する。OA1A2B1が平行であることから
OB1=OA2+A2B1=OA2+    OA1
である。また
|OA2OA1|2=|A1A2|2=    +        
に注意すると
OA1OA2=            
を得る。

次に、面OA_2B_2C_2A_2に着目すると
OB2=OA3+    OA2
である。さらに
OA2OA3=OA3OA1=            
が成り立つことがわかる。ゆえに
OA1OB2=    , OB1OB2=    
である。

    ,     の解答群(同じものを繰り返し選んでもよい。)
0
1
1
1+52
152
1+52
152
12
1+54
154


最後に、面A2C1DEB2に着目する。
B2D=    A2C1=OB1
であることに注意すると、4点O,B1,D,B2は同一平面上にあり、四角形
OB1DB2    ことがわかる。

    の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない

(ただし、少なくとも1組の対辺が平行な四角形を台形という)

2021共通テスト過去問
この動画を見る 

【数B】空間ベクトル:2直線の交点の位置ベクトル!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、辺ABを1:3に内分する点をL、点OCを3:1に内分する点をM、線分CLを3:2に内分する点をN、線分LMとONの交点をPとし、OA=a、OB=b、OC=cとするとき、OPをa,b,cで表せ。
この動画を見る 

福田の数学〜立方体の平面による切断を考えよう〜慶應義塾大学2023年経済学部第5問〜立方体の平面による切断と体積の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , 32 )とする。
(1)a,bを実数とし、べクトルn=( a , b , 1 )は 2 つのべクトル PQ,PRの両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面をαとし、点 F を通り平面をαとし、点Fを通り平面αに垂直な直線をlとする。また、xy平面と直線lの交点のx座標が23であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第2問〜球面と平面の交わりと切り取られる弦の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
2 Oを原点とする座標空間において、3点A(4,2,1), B(1,-4,1), C(2,2,-1)を通る平面をαとおく。また、球面Sは半径が9で、Sとαの交わりはAを中心としBを通る円であるとする。ただし、Sの中心Pのz座標は正とする。
(1)線分APの長さを求めよ。
(2)Pの座標を求めよ。
(3)Sと直線OCは2点で交わる。その2点間の距離を求めよ。

2023北海道大学理系過去問
この動画を見る 

【数C】空間ベクトル:次の2点間の距離を求めよ。A(1,2,3)B(2,4,5)

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2点間の距離を求めよ。A(1,2,3)B(2,4,5)
この動画を見る 
PAGE TOP preload imagepreload image