福田の数学〜立教大学2022年経済学部第1問(1)〜対称式の値の計算 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第1問(1)〜対称式の値の計算

問題文全文(内容文):
$x+y=2,1/x+1/y=-1/2$のとき、$|x-y|$の値を求めよ

2022立教大学経済学部過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x+y=2,1/x+1/y=-1/2$のとき、$|x-y|$の値を求めよ

2022立教大学経済学部過去問
投稿日:2022.09.18

<関連動画>

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 

福田の数学〜神戸大学2023年理系第1問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$を
$f(x)$=$\left\{\begin{array} \\
\frac{1}{2}x+\frac{1}{2} (x≦ 1)\\
2x-1 (x \gt 1)\\
\end{array}\right.$
で定める。aを実数とし、数列$\left\{a_n\right\}$を
$a_1$=a, $a_{n+1}$=$f(a_n)$ (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)すべての実数xについて$f(x)$≧x が成り立つことを示せ。
(2)a≦1のとき、すべての正の整数nについて$a_n$≦1が成り立つことを示せ。
(3)数列$\left\{a_n\right\}$の一般項をnとaを用いて表せ。

2023神戸大学理系過去問
この動画を見る 

一橋大学(’94)微分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
一橋大学'94過去問題
$y=x^3$と$y=x^2+x+c$
との両方に接する直線が4本あるようなcの範囲
この動画を見る 

大阪大 確率 3次式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について

(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?

(2)
$f(x)$が極大値・極小値もとる確率は?

出典:2012年大阪大学 過去問
この動画を見る 

福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP