福田の数学〜東京医科歯科大学2024医学部第2問〜ベクトルの勾配と無理不等式の解 - 質問解決D.B.(データベース)

福田の数学〜東京医科歯科大学2024医学部第2問〜ベクトルの勾配と無理不等式の解

問題文全文(内容文):
$\fbox{2} xyz$ 空間において、点$\mathrm{ A }( 1, 0, 0 )$, $\mathrm{ B }(0, 1, 0)$, $\mathrm{ C }(-1, 0, 0)$, $\mathrm{ D }(0, 0, 1)$ をとり、線分 $\mathrm{ CD }$の中点を$\mathrm{ M }$とする。さらに、$\mathrm{ N }$を線分$\mathrm{ BD }$上の点とする。また、$z$軸と平行でない直線上の異なる2点$\mathrm{ P }(x, y, z), \mathrm{ Q }(x', y', z')$ に対して
$\frac{z' - z}{\sqrt{(x' - x) ^ 2 + (y' - y) ^ 2}}$をベクトル$\overrightarrow{ \mathrm{ PQ } }$の勾配と呼ぶ。$\overrightarrow{ \mathrm{ AN } }$の勾配を$t_1$、$\overrightarrow{ \mathrm{ NM } }$の勾配を$t_2$とするとき、
以下の各問いに答えよ。
(1) $t_2 = 0$ となるように$\mathrm{ N }$をとったとき、$t_1$の値を求めよ。
(2) $l = |\overrightarrow{ \mathrm{ AN } }|+|\overrightarrow{ \mathrm{ NM } }|$とし、$l$が最小となるように$\mathrm{ N }$をとったとき、$l$の値を求めよ。
(3) $0 \leqq t_{2} \leqq t_{1}$ となるように$\mathrm{ N }$をとったとき、$\mathrm{ N }$の$y$座標を$s$とする。$s$がとりうる値の範囲を求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{2} xyz$ 空間において、点$\mathrm{ A }( 1, 0, 0 )$, $\mathrm{ B }(0, 1, 0)$, $\mathrm{ C }(-1, 0, 0)$, $\mathrm{ D }(0, 0, 1)$ をとり、線分 $\mathrm{ CD }$の中点を$\mathrm{ M }$とする。さらに、$\mathrm{ N }$を線分$\mathrm{ BD }$上の点とする。また、$z$軸と平行でない直線上の異なる2点$\mathrm{ P }(x, y, z), \mathrm{ Q }(x', y', z')$ に対して
$\frac{z' - z}{\sqrt{(x' - x) ^ 2 + (y' - y) ^ 2}}$をベクトル$\overrightarrow{ \mathrm{ PQ } }$の勾配と呼ぶ。$\overrightarrow{ \mathrm{ AN } }$の勾配を$t_1$、$\overrightarrow{ \mathrm{ NM } }$の勾配を$t_2$とするとき、
以下の各問いに答えよ。
(1) $t_2 = 0$ となるように$\mathrm{ N }$をとったとき、$t_1$の値を求めよ。
(2) $l = |\overrightarrow{ \mathrm{ AN } }|+|\overrightarrow{ \mathrm{ NM } }|$とし、$l$が最小となるように$\mathrm{ N }$をとったとき、$l$の値を求めよ。
(3) $0 \leqq t_{2} \leqq t_{1}$ となるように$\mathrm{ N }$をとったとき、$\mathrm{ N }$の$y$座標を$s$とする。$s$がとりうる値の範囲を求めよ。
投稿日:2024.08.19

<関連動画>

【数B】空間ベクトル:平面の方程式の求め方(①法線ベクトルを用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$\overrightarrow{ a }=(\sqrt3,0,1)$とする。
空間ベクトル$\overrightarrow{ b }, \overrightarrow{ c }$はともに大きさが1であり、
$\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a }$とする。
$(\textrm{i})p,q,r$を実数とし、$\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c }$とするとき、
内積$\overrightarrow{ x }・\overrightarrow{ a }$と$\overrightarrow{ x }$の大きさ$|\overrightarrow{ x }|$をp,q,rを用いて表すと、
$\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }$を満たす実数$s,\theta$が存在するような
実数zは2個あるが、それらを全て求めると$z=\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体$OABC$の辺$AB$を$4:5$に内分する点を$D$、辺$OC$を$2:1$に内分する点を$E$とし、線分$DE$の中点を$P$、直線$OP$が平面$ABC$と交わる点を$Q$とする。
次の各問いに答えよ。
(1)
$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とおくとき、$\overrightarrow{ OP }$を$\vec{ a },\ \vec{ b },\ \vec{ c }$で表せ。
また、$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の大きさの比$|\overrightarrow{ OP }|:|\overrightarrow{ OQ }|$を最も簡単な整数比で表せ。

(2)
$\triangle ABQ$と$\triangle ABC$の面積比$\triangle ABQ:\triangle ABC$を最も簡単な整数比で表せ。
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(1)〜空間ベクトルと球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)座標空間内に3点A$(2,0,0),\ B(0,4,0),\ C(0,0,8)$をとる。
2つのベクトル$\overrightarrow{ AP }$と$\overrightarrow{ BP }+\overrightarrow{ CP }$の内積が0となるような点$P(x,y,z)$
のうち、$|\overrightarrow{ AP }$|が最大となる点Pの座標を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

【数C】【空間ベクトル】点A(3,-4,2)に関して、点P(1,2,3)と対称な点Qの座標を求めよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
点A(3,-4,2)に関して、点P(1,2,3)と対称な点Qの座標を求めよ
この動画を見る 
PAGE TOP