問題文全文(内容文):
$\boxed{1}$
(1)自然数$n$に対して$a_n=2^n$とし、
積$a_1a_2\cdots a_n$を$A_n$とおく。
このとき、$A_n \geqq 10^{10}$を満たす最小の
$n$は$\boxed{ア}$である。
ただし、$\log_2 10=3.3219$とする。
$2025$年立教大学理学部過去問題
$\boxed{1}$
(1)自然数$n$に対して$a_n=2^n$とし、
積$a_1a_2\cdots a_n$を$A_n$とおく。
このとき、$A_n \geqq 10^{10}$を満たす最小の
$n$は$\boxed{ア}$である。
ただし、$\log_2 10=3.3219$とする。
$2025$年立教大学理学部過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)自然数$n$に対して$a_n=2^n$とし、
積$a_1a_2\cdots a_n$を$A_n$とおく。
このとき、$A_n \geqq 10^{10}$を満たす最小の
$n$は$\boxed{ア}$である。
ただし、$\log_2 10=3.3219$とする。
$2025$年立教大学理学部過去問題
$\boxed{1}$
(1)自然数$n$に対して$a_n=2^n$とし、
積$a_1a_2\cdots a_n$を$A_n$とおく。
このとき、$A_n \geqq 10^{10}$を満たす最小の
$n$は$\boxed{ア}$である。
ただし、$\log_2 10=3.3219$とする。
$2025$年立教大学理学部過去問題
投稿日:2025.06.03





