【高校数学】 数B-38 空間ベクトルと成分① - 質問解決D.B.(データベース)

【高校数学】 数B-38 空間ベクトルと成分①

問題文全文(内容文):
◎平行六面体ABCD-EFGHにおいて、$\overrightarrow{ AB }=\overrightarrow{ a },\overrightarrow{ AD }=\overrightarrow{ b },\overrightarrow{ AE }=\overrightarrow{ c }$とする。
次のベクトル$\overrightarrow{ a },\overrightarrow{ b },\overrightarrow{ c }$を用いて表そう。

①$\overrightarrow{ AC }$

②$\overrightarrow{ AF }$

③$\overrightarrow{ BG }$

④$\overrightarrow{ FH }$

⑤$\overrightarrow{ DF }$

⑥$\overrightarrow{ CH }$

※図は動画内参照
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎平行六面体ABCD-EFGHにおいて、$\overrightarrow{ AB }=\overrightarrow{ a },\overrightarrow{ AD }=\overrightarrow{ b },\overrightarrow{ AE }=\overrightarrow{ c }$とする。
次のベクトル$\overrightarrow{ a },\overrightarrow{ b },\overrightarrow{ c }$を用いて表そう。

①$\overrightarrow{ AC }$

②$\overrightarrow{ AF }$

③$\overrightarrow{ BG }$

④$\overrightarrow{ FH }$

⑤$\overrightarrow{ DF }$

⑥$\overrightarrow{ CH }$

※図は動画内参照
投稿日:2016.01.02

<関連動画>

福田の数学〜大阪大学2023年理系第4問〜空間ベクトルと軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,b を$a^2+b^2>1$かつ b≠0 をみたす実数の定数とする。
座標空間のA (a,0,b) と点 P(x, y, 0) をとる。
点O(0, 0, 0) を通り直線APと垂直な平面をαとし、平面と直線AP との交点をQとする。

$(\overrightarrow{ AP }・\overrightarrow{ AO })^2=|\overrightarrow{ AP }|^2|\overrightarrow{ AQ }|^2$が成り立つことを示せ。

$|\overrightarrow{ OQ }|^2=1$ をみたすように点P(x,y,0) が xy平面上を動くとき、点Pの軌跡を求めよ。

2023大阪大学理系過去問
この動画を見る 

【数C】【空間ベクトル】四面体において、△ABC、△ACD,△ADB,△BCDの重心をそれぞれG,H,I,Jとする。4つの線分DG,BH,CI,AJをそれぞれ3:1に内分する点は一致することを証明せよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点A,B,C,Dを頂点とする四面体において、△ABC、△ACD,△ADB,△BCDの重心をそれぞれG,H,I,Jとする。このとき、4つの線分DG,BH,CI,AJをそれぞれ3:1に内分する点は一致することを証明せよ。
この動画を見る 

福田の数学〜東北大学2024年理系第4問〜2つの球面の交わりの円

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $xyz$空間において、点$P_1$(3,-1,1)を中心とした半径$\sqrt 5$の球面$S_1$と、点$P_2$(5,0,-1)を中心とし半径が$\sqrt 2$の球面$S_2$を考える。
(1)線分$P_1P_2$の長さを求めよ。
(2)$S_1$と$S_2$が交わりをもつことを示せ。この交わりは円となる。この円をCとし、その中心を$P_3$とする。Cの半径および中心$P_3$の座標を求めよ。
(3)(2)の円Cに対し、Cを含む平面をHとする。$xy$平面とHの両方に平行で、大きさが1のベクトルを全て求めよ。
(4)点Qが(2)の円C上を動くとき、Qと$xy$平面の距離dの最大値を求めよ。
また、dの最大値を与える点Qの座標を求めよ。
この動画を見る 

福田の数学〜立教大学2023年理学部第2問〜ベクトルの共面条件と共線条件

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<$k$1とする。座標空間内の四面体OABCについて、線分ACの中点をD、線分BCの中点をE、線分DEを1:2に内分する点をPとする。また、
線分OPを$k$:1-$k$に内分する点をQとし、Rを$\overrightarrow{CR}$=$l\overrightarrow{CQ}$を満たす点とする。
$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおいたとき、次の問いに答えよ。
(1)$\overrightarrow{OD}$, $\overrightarrow{OE}$, $\overrightarrow{OP}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$を用いて表せ。
(2)$\overrightarrow{OR}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$, $k$, $l$を用いて表せ。
(3)Rが平面OAB上にあるとき、$l$を$k$を用いて表せ。
(4)線分OAの中点をF、線分OBの中点をGとする。Rが線分FG上にあるときの$k$の値を求めよ。
この動画を見る 

【数B】空間ベクトル:平面の方程式の求め方(①法線ベクトルを用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
この動画を見る 
PAGE TOP