問題文全文(内容文):
$\boxed{14}$
$c:y=x\sin x \ (0\leqq x\leqq 2\pi)$
第4象限にある$C$上の点の接線$\ell$は原点を通る.
$c$と$\ell$で囲まれた面積$S$を求めよ.
$\boxed{14}$
$c:y=x\sin x \ (0\leqq x\leqq 2\pi)$
第4象限にある$C$上の点の接線$\ell$は原点を通る.
$c$と$\ell$で囲まれた面積$S$を求めよ.
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{14}$
$c:y=x\sin x \ (0\leqq x\leqq 2\pi)$
第4象限にある$C$上の点の接線$\ell$は原点を通る.
$c$と$\ell$で囲まれた面積$S$を求めよ.
$\boxed{14}$
$c:y=x\sin x \ (0\leqq x\leqq 2\pi)$
第4象限にある$C$上の点の接線$\ell$は原点を通る.
$c$と$\ell$で囲まれた面積$S$を求めよ.
投稿日:2021.04.14





