重積分⑨-3【広義積分】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑨-3【広義積分】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
$\int_0^\infty e{-x^2}dx = \frac{\sqrt x}{2}$
(1)$\int_1^\infty e^{-(x-1)^2}dx$
(2)$\frac{1}{\sqrt{2x}} \int_{-\infty}^\infty e^{- \frac{x^2}{2}}dx$
(3)$\frac{1}{\sigma \sqrt{2x}} \int_{-\infty}^\infty xe^{-\frac{(x-\mu)^2}{2 \sigma^2}}dx$
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\int_0^\infty e{-x^2}dx = \frac{\sqrt x}{2}$
(1)$\int_1^\infty e^{-(x-1)^2}dx$
(2)$\frac{1}{\sqrt{2x}} \int_{-\infty}^\infty e^{- \frac{x^2}{2}}dx$
(3)$\frac{1}{\sigma \sqrt{2x}} \int_{-\infty}^\infty xe^{-\frac{(x-\mu)^2}{2 \sigma^2}}dx$
投稿日:2020.11.17

<関連動画>

練習問題34 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$(1-x)y+(1+y)x\dfrac{dy}{dx}=0$
の一般解を求めよ.
この動画を見る 

#21 数検1級1次 過去問 無限級数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^\infty\ \displaystyle \frac{k}{1+k^2+k^4}$を求めよ。
この動画を見る 

練習問題33 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dy}{dx}=(x+y)^2$
の一般解を求めよ.
この動画を見る 

#29 数検1級1次 過去問 解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^3+2x^2+4x+7=0$の3つの解を$\alpha,\beta,\gamma$とする
$\alpha^4,\beta^4,\gamma^4$の値を求めよ。
この動画を見る 

#20 数検1級1次過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
$\iiint_D x^3y^2z \ dx \ dy \ dz$
$D:0\leq x\leq y\leq z\leq 1$
を求めよ.
この動画を見る 
PAGE TOP