重積分⑨-3【広義積分】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑨-3【広義積分】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
$\int_0^\infty e{-x^2}dx = \frac{\sqrt x}{2}$
(1)$\int_1^\infty e^{-(x-1)^2}dx$
(2)$\frac{1}{\sqrt{2x}} \int_{-\infty}^\infty e^{- \frac{x^2}{2}}dx$
(3)$\frac{1}{\sigma \sqrt{2x}} \int_{-\infty}^\infty xe^{-\frac{(x-\mu)^2}{2 \sigma^2}}dx$
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\int_0^\infty e{-x^2}dx = \frac{\sqrt x}{2}$
(1)$\int_1^\infty e^{-(x-1)^2}dx$
(2)$\frac{1}{\sqrt{2x}} \int_{-\infty}^\infty e^{- \frac{x^2}{2}}dx$
(3)$\frac{1}{\sigma \sqrt{2x}} \int_{-\infty}^\infty xe^{-\frac{(x-\mu)^2}{2 \sigma^2}}dx$
投稿日:2020.11.17

<関連動画>

#29 数検1級1次 過去問 解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^3+2x^2+4x+7=0$の3つの解を$\alpha,\beta,\gamma$とする
$\alpha^4,\beta^4,\gamma^4$の値を求めよ。
この動画を見る 

数検Ⅰ級レベル 東工大9割男 栗崎

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定1級#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
極限値
$\displaystyle \lim_{ x \to \infty }${$\sqrt{ x^2+3x-1 }- \sqrt[ 3 ]{ x^3+x^2-1 }$}
この動画を見る 

重積分⑫-2【図形Dの重心】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
図形Dの重心Gは
$G\begin{pmatrix}
∬_Dxdxdy & ∬_Dydxdy \\
∬_Ddxdy & ∬_Ddxdy
\end{pmatrix}$
(1)$y^2=4x,x=1$
で囲まれた図形Dの重心Gを求めよ。
(2)$\sqrt x+\sqrt y =1$,x軸、y軸で囲まれた図形Dの重心Gを求めよ。
この動画を見る 

練習問題44 東京工業大学 極限値 数検1級 教員採用試験(数学)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }(\displaystyle \frac{{}_{ 3n } C_n}{{}_{ 2n } C_n})^\frac{1}{n}$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$

出典:東京工業大学 練習問題
この動画を見る 

#34 数検1級1次 過去問 積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\infty}\displaystyle \frac{1}{(x^2+1)^4}\ dx$を計算せよ。
この動画を見る 
PAGE TOP