意外と間違える!?二次方程式 2024京都府 - 質問解決D.B.(データベース)

意外と間違える!?二次方程式 2024京都府

問題文全文(内容文):
方程式を解け
$8x^2=22x$

2024京都府
単元: #数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$8x^2=22x$

2024京都府
投稿日:2024.03.12

<関連動画>

ざ・一次不定方程式 合同式で楽々

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数x,yについて、$97x+83y=23$を満たす整数解x,yの一般解を求めよ.
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[1]。2次方程式、2次関数、必要十分条件の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第2問\ [1] p,qを実数とする。
花子さんと太郎さんは、次の二つの2次方程式について考えている。
$x^2+px+q=0 \ldots①$
$x^2+qx+p=0 \ldots②$
①または②を満たす実数xの個数をnとおく。

(1)$p=4,q=-4$のとき、$n=\boxed{ア}$である。
また、$p=1,q=-2$のとき、$n=\boxed{イ}$である。
(2)$p=-6$のとき、$n=3$になる場合を考える。

花子:例えば、①と②を共に満たす実数xがあるときは$n=3$に
なりそうだね。
太郎:それを$\alpha$としたら、$\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0$が
成り立つよ。
花子:なるほど。それならば、$\alpha^2$を消去すれば、$\alpha$の値が求められそうだね。
太郎:確かに$\alpha$の値が求まるけど、実際に$n=3$となっているか
どうかの確認が必要だね。
花子:これ以外にも$n=3$となる場合がありそうだね。

$n=3$となるqの値は
$q=\boxed{ウ}, \boxed{エ}$
である。ただし、$\boxed{ウ} \lt \boxed{エ}$とする。

$p=-6$に固定したまま、qの値だけを変化させる。
$y=x^2-6x+q \ldots③$
$y=x^2+qx-6 \ldots④$

(1)この二つのグラフについて、$q=1$のときのグラフを点線で、
qの値を1から増加させたときのグラフを実線でそれぞれ表す。
このとき、③のグラフの移動の様子を示すと$\boxed{オ}$となり、
④のグラフの移動の様子を示すと$\boxed{カ}$となる。

$\boxed{オ}, \boxed{カ}$については、最も適当なものを、次の⓪~⑦
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
なお、x軸とy軸は省略しているが、x軸は右方向、
y軸は上方向がそれぞれ正の方向である。
(※選択肢は動画参照)

(4)$\boxed{ウ} \lt q \lt \boxed{エ}$とする。全体集合Uを実数全体の集合とし、
Uの部分集合A,Bを

$A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}$
$B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}$

とする。Uの部分集合Xに対し、Xの補集合を$\bar{ X }$と表す。このとき、
次のことが成り立つ。

・$x \in A$は、$x \in B$であるための$\boxed{キ}$。
・$x \in B$は、$x \in \bar{ A }$であるための$\boxed{ク}$。

$\boxed{キ}, \boxed{ク}$の解答群(同じものを繰り返し選んでもよい。)
⓪必要条件であるが、十分条件ではない
①十分条件であるが、必要条件ではない
②必要十分条件である
③必要条件でも十分条件でもない

2022共通テスト数学過去問
この動画を見る 

もっちゃんと数学

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(\dfrac{5^{\sqrt3}}{25}\right)^{\sqrt{7+4\sqrt3}}$を計算せよ.
この動画を見る 

青山学院大 放物線の中の四角形

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#図形の性質#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^2+4x$
原点$O,A(4,0),P(p,f_{(p)}),Q(q,f_{(q)})$ $(0\lt p\lt q\lt 4)$
四角形$OAQP$の面積の最大値を求めよ.

青山学院大過去問
この動画を見る 

円周角 2通りで解説 智辯学園 (奈良)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
何度?
*図は動画内参照
智弁学園高等学校
この動画を見る 
PAGE TOP