共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数 - 質問解決D.B.(データベース)

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

問題文全文(内容文):
1
[1](1)次の問題Aについて考えよう。
A y=sinθ+3cosθ(0θπ2)$

sinπ    =32, cosπ    =12
であるから、三角関数の合成により

y=    sin(θ+π    )

と変形できる。よって、yθ=π    で最大値      をとる。

(2)pを定数とし、次の問題Bについて考えよう。
B y=sinθ+pcosθ(0θπ2)

(i) p=0のとき、yθ=π    で最大値      をとる。
(ii) p>0のときは、加法定理
cos(θα)=cosθcosα+sinθsinα
を用いると
y=sinθ+pcosθ=    cos(θα)
と表すことができる。ただし、α
sinα=        cosα=        0<α<π2
を満たすものとする。このとき、yθ=    で最大値
    をとる。

(iii) p<0のとき、yθ=    で最大値    をとる。

                の解答群(同じものを繰り返
し選んでもよい。)
1
1
p
p
1p
1+p
p2
p2
1p2
1+p2
(1p)2
(1+p)2


        の解答群(同じものを繰り返し選んでもよい。)
0
α
π2


[2]二つの関数f(x)=2x+2x2g(x)=2x2x2 について考える。

(1)f(0)=    g(0)=    である。また、f(x)は相加平均
と相乗平均の関係から、x=    で最小値      をとる。
g(x)=2 となるxの値はlog2(        )である。

(3)次の①~④は、xにどのような値を代入しても常に成り立つ。
f(x)=     
g(x)=     
{f(x)}2{g(x)}2=     
g(2x)=     f(x)g(x) 

        の解答群(同じものを繰り返し選んでもよい。)
f(x)
f(x)
g(x)
g(x)


(3)花子さんと太郎さんは、f(x)g(x)の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式(A)~(D)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式(A)~(D)のβに何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
f(αβ)=f(α)g(β)+g(α)f(β) (A)
f(α+β)=f(α)f(β)+g(α)g(β) (B)
g(αβ)=f(α)f(β)+g(α)g(β) (C)
g(α+β)=f(α)g(β)g(α)f(β) (D)


(1),(2)で示されたことのいくつかを利用すると、式(A)~(D)のうち、
    以外の三つは成り立たないことが分かる。    は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

    の解答群
(A)
(B)
(C)
(D)

2021共通テスト過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
[1](1)次の問題Aについて考えよう。
A y=sinθ+3cosθ(0θπ2)$

sinπ    =32, cosπ    =12
であるから、三角関数の合成により

y=    sin(θ+π    )

と変形できる。よって、yθ=π    で最大値      をとる。

(2)pを定数とし、次の問題Bについて考えよう。
B y=sinθ+pcosθ(0θπ2)

(i) p=0のとき、yθ=π    で最大値      をとる。
(ii) p>0のときは、加法定理
cos(θα)=cosθcosα+sinθsinα
を用いると
y=sinθ+pcosθ=    cos(θα)
と表すことができる。ただし、α
sinα=        cosα=        0<α<π2
を満たすものとする。このとき、yθ=    で最大値
    をとる。

(iii) p<0のとき、yθ=    で最大値    をとる。

                の解答群(同じものを繰り返
し選んでもよい。)
1
1
p
p
1p
1+p
p2
p2
1p2
1+p2
(1p)2
(1+p)2


        の解答群(同じものを繰り返し選んでもよい。)
0
α
π2


[2]二つの関数f(x)=2x+2x2g(x)=2x2x2 について考える。

(1)f(0)=    g(0)=    である。また、f(x)は相加平均
と相乗平均の関係から、x=    で最小値      をとる。
g(x)=2 となるxの値はlog2(        )である。

(3)次の①~④は、xにどのような値を代入しても常に成り立つ。
f(x)=     
g(x)=     
{f(x)}2{g(x)}2=     
g(2x)=     f(x)g(x) 

        の解答群(同じものを繰り返し選んでもよい。)
f(x)
f(x)
g(x)
g(x)


(3)花子さんと太郎さんは、f(x)g(x)の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式(A)~(D)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式(A)~(D)のβに何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
f(αβ)=f(α)g(β)+g(α)f(β) (A)
f(α+β)=f(α)f(β)+g(α)g(β) (B)
g(αβ)=f(α)f(β)+g(α)g(β) (C)
g(α+β)=f(α)g(β)g(α)f(β) (D)


(1),(2)で示されたことのいくつかを利用すると、式(A)~(D)のうち、
    以外の三つは成り立たないことが分かる。    は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

    の解答群
(A)
(B)
(C)
(D)

2021共通テスト過去問
投稿日:2021.01.18

<関連動画>

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第1問〜三角関数、指数対数関数、図形と方程式

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#指数関数と対数関数#指数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
[1](1)0θ<2πのとき
sinθ>3cos(θπ3) 
となるθの値の範囲を求めよう。
加法定理を用いると

3cos(θπ3)=        cosθ+        sinθ

である。よって、三角関数の合成を用いると、①は

sin(θ+π    )<0

と変形できる。したがって、求める範囲は

        π<θ<        π

である。

(2)0θπ2とし、kを実数とする。sinθcosθxの2次方程式
25x235x+k=0の解であるとする。このとき、解と係数の関係に
よりsinθ+cosθsinθcosθの値を考えれば、k=    
あることがわかる。

さらに、θsinθcosθを満たすとすると、sinθ=        ,
cosθ=        である。このとき、θ    を満たす。
    に当てはまるものを、次の⓪~⑤のうちから一つ選べ。
0θ<π12

π12θ<π6

π6θ<π4

π4θ<π3

π3θ<512π

512πθπ2


[2](1)tは正の実数であり、t13t13=3を満たすとする。このとき

t23+t23=    

である。さらに

t12+t12=    , tt1=    

である。

(2)x,yは正の実数とする。連立方程式
{log3(xy)5 log81yx31 

について考える。
X=log3x, Y=log3yとおくと、②は
     X+Y     
と変形でき、③は
     XY     
と変形できる。
X,Yが④と⑤を満たすとき、Yの取り得る最大の整数の値は
    である。また、x,yが②,③とlog3y=    を同時に
満たすとき、xの取り得る最大の整数の値は    である。

2020センター試験過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3
数列{an}は、初項a10であり、n=1,2,3,のとき次の漸化式を
満たすものとする。
an+1=n+3n+1{3an+3n+1(n+1)(n+2)} 

(1)a2=     である。

(2)bn=an3n(n+1)(n+2)とおき、数列{bn}の一般項を求めよう。
{bn}の初項b1    である。①の両辺を3n+1(n+2)(n+3)
割ると
bn+1=bn+    (n+    )(n+    )(1    )n+1

を得る。ただし、    <    とする。

したがって

bn+1bn=(    n+        n+    )(1    )n+1
である。

nを2以上の自然数とするとき

k=1n1(    k+        k+    )=1    (n    n+    )

k=1n1(1    )k+1=                (1    )n

が成り立つことを利用すると

bn=n        (n+    )+        (1    )n

が得られる。これはn=1のときも成り立つ。

(3)(2)により、{an}の一般項は
an=    n(n2    )+(n+    )(n+    )    

で与えられる。ただし、    <    とする。
このことから、すべての自然数nについて、
anは整数となることが分かる。

(4)kを自然数とする。a3k,a3k+1,a3k+2で割った余りはそれぞれ
    ,     ,     である。また、{an}の初項から
第2020項までの和を3で割った余りは    である。

2020センター試験過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#センター試験#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4
Oを原点とする座標空間に2点
A(3, 3, 6), B(2+23, 223, 4)
をとる。3点O,A,Bの定める平面をαとする。また、αに含まれる点C

OAOC, OBOC=24 

を満たすとする。

(1) |OA|=        , |OB|=        であり、
OAOB=    である。

(2)点Cは平面α上にあるので、実数s, tを用いて、OC=s OA+t OB
表すことができる。このとき、①からs=        , t=    である。
したがって、|OC|=        である。

(3)CB=(    ,     ,     )である。したがって、平面α上の
四角形OABC    
    に当てはまるものを、次の⓪~④のうちから一つ選べ。
ただし、少なくとも一組の対辺が平行な四角形を台形という。

⓪正方形である
①正方形ではないが、長方形である
②長方形ではないが、平行四辺形である
③平行四辺形ではないが、台形である
④台形ではない

OAOCであるので、四角形OABCの面積は    である。

(4)OAOD, OCOD=26かつz座標が1であるような点Dの座標は
(    +        ,     +        , 1)
である。このときCOD=    °である。
3点O,C,Dの定める平面をβとする。αβは垂直であるので、三角形
ABCを底面とする四面体DABCの高さは    である。したがって、
四面体DABCの体積は         である。

2020センター試験過去問
この動画を見る 

絶対にやってはいけない!センター試験でのNG5選!【篠原好】

アイキャッチ画像
単元: #センター試験・共通テスト関連#センター試験#その他#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
絶対にやってはいけない!
「センター試験でのNG5選」についてお話しています。
この動画を見る 

センター試験 数学1A満点のもっちゃんがセンター数学やるよ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x25x+3=0の2解をα,β
(1)α3,β3を解にもつ2次方程式
  x2+px+q=0 p,qの値



(2)|αβ|=m+d
(m整数,0d<1)
n10d<n+1 整数n


過去問:センター試験
この動画を見る 
PAGE TOP preload imagepreload image