【3分間高校入試】平方根:慶応義塾志木高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【3分間高校入試】平方根:慶応義塾志木高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 傾向義塾志木高等学校

$(\sqrt{ 3 }+\sqrt{ 5 })^2$
小数部分を$x$とするとき、
$x^2+14x$の値を求めよ。
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#慶應義塾志木高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 傾向義塾志木高等学校

$(\sqrt{ 3 }+\sqrt{ 5 })^2$
小数部分を$x$とするとき、
$x^2+14x$の値を求めよ。
投稿日:2021.04.05

<関連動画>

平方根:東京都立新宿高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#東京都立新宿高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京都立新宿高等学校

$x=\displaystyle \frac{5-4\sqrt{ 7 }}{2},y=\displaystyle \frac{5+8\sqrt{ 7 }}{2}$
のとき
→$x^2+2xy+y^2+4x-4y$
の値を求めよ。
この動画を見る 

穴埋め問題 平方根

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\boxed{ア} \boxed{イ}} = \boxed{ア} + \sqrt{\boxed{イ}}$
(ア,イは1~9の自然数 ア<イ)
この動画を見る 

平方根の計算 香川誠陵 2022入試問題解説 22問目

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
計算せよ
$(\frac{2}{\sqrt 2} + \frac{3}{\sqrt 3}) \times (\sqrt {18} - \sqrt {12})$

2022香川誠陵高等学校
この動画を見る 

【数学】中3-22 ルートと展開のコラボ

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$

⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
この動画を見る 

【高校受験対策/数学】死守76

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#比例・反比例#空間図形#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守76

①$2-(-5)$を計算しなさい。

②$4x-2x×\frac{1}{2}$を計算しなさい。

③$-6a^3b^2÷(-4ab)$を計算しなさい。

④$x=-2$、$y=3$のとき$(2x-y-6)+3(x+y+2)$の値を求めなさい。

③下の図の三角柱$ABC-DEF$において、 辺$AB$とねじれの位置にある辺をすべて答えなさい。

⑥$n$を自然数とする。$\sqrt{24n}$が自然数となるような$n$のうち、最も小さい数を求めなさい。

⑦2つの容器A、Bに牛乳が入っており、容器Bに入っている牛乳の量は、容器Aに入っている牛乳の量の2倍である。
容器Aに$140ml$の牛乳を加えたところ、 容器Aと容器Bの牛乳の量の比が$5:3$となった。
はじめに容器Aに入って いた牛乳の量は何$ml$であったか、求めなさい。

⑧あるクラスの女子生徒20人が体カテストで反復横とびを行い、
その記録を整理したところ、20人の記録の中央値は50回であった。
この20人の記録について、次のア~エのうち、必ず正しいといえるものを1つ選びなさい。

ア 20人の記録の合計は1000回である。
イ 20人のうち、記録が50回であった生徒が最も多い。
ウ 20人のうち、記録が60回以上であった生徒は1人もいない。
エ 20人のうち、記録が50回以上であった生徒が少なくとも10人いる。
この動画を見る 
PAGE TOP