【「思考の過程を説明できるか?】一次関数:東京都立日比谷高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【「思考の過程を説明できるか?】一次関数:東京都立日比谷高等学校~全国入試問題解法

問題文全文(内容文):
一次関数$y=ax+4$において
$x$の変域$-3\leqq x\leqq 6$のとき,$y$の変域は$2\leqq y\leqq 5$である.
定数$a$の値を求めよ.

都立日比谷高校過去問
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
一次関数$y=ax+4$において
$x$の変域$-3\leqq x\leqq 6$のとき,$y$の変域は$2\leqq y\leqq 5$である.
定数$a$の値を求めよ.

都立日比谷高校過去問
投稿日:2022.08.26

<関連動画>

【受験対策】  数学-関数④

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y=\displaystyle \frac{24}{x}$とそのグラフ上の点Aがある。
直線又は点Aを通る傾きが3の直線で、 関数$y=\displaystyle \frac{24}{x}$とのもう一つの交点をBとします。
点Aのx座標が2のとき、次の問いに答えよう。

①点Aの座標は?

②点Bの座標は?

③△OABの面積は?
※図は動画内参照
この動画を見る 

【中学数学】平行線と角の裏技~補助線不要~ 4-1.5【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中2数学】平行線と角の裏技 補助線不要
この動画を見る 

連立方程式だけど、2次式 四天王寺

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け(x>0 , y<0)
$
\begin{eqnarray}
\left\{
\begin{array}{l}
3x^2 + y^2 = 9 \\
2x^2 - 3y^2 = -5
\end{array}
\right.
\end{eqnarray}
$
四天王寺高等学校
この動画を見る 

中2数学「単項式と多項式・次数」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の式を単項式と多項式に分けなさい.

ア.$-3x$
イ.$3a-4$
ウ.$a^2+2a+1$
エ.$-\dfrac{1}{2}m^3$
オ.$\dfrac{x^2-1}{4}$

単項式→
多項式→

例2
多項式$\dfrac{1}{4}x^2-x+1$の項を答えなさい.
また文字を含む項の係数を答えなさい.

項→
係数→

例3
次の式は何次式ですか.

(1)$2a^2$
(2)$4x^2y$
(3)$-5ab^3$
(4)$4x-xy$
(5)$x^2y^2-2xy-3y$
この動画を見る 

【高校受験対策】数学-死守36

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36

①$5+4 \times 6$を計算せよ

②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ

③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ

④比例式$3:4=(x-6):8$について$x$の値を求めよ。

⑤$3x^2+9x-12$を因数分解せよ。

⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。

⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
この動画を見る 
PAGE TOP