昭和大学医学部 2018年 区分求積法 #Shorts - 質問解決D.B.(データベース)

昭和大学医学部 2018年 区分求積法 #Shorts

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n (\displaystyle \frac{\sqrt{ n }}{n+k})^2$

出典:2018年昭和大学医学部
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n (\displaystyle \frac{\sqrt{ n }}{n+k})^2$

出典:2018年昭和大学医学部
投稿日:2024.01.27

<関連動画>

大学入試問題#376「平均点の調整問題?」 奈良県立医科大学(2015) #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=5+2\displaystyle \int_{0}^{1}e^{t-x}f(t)dt$をみたす$f(x)$を求めよ。

出典:2015年奈良県立医科大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(3)〜絶対値の付いた対数関数の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)実数$x$に対して、関数

$f(x)=\left \vert \dfrac{1}{10^{-x}\log 10^{-x}}\right \vert$

は、$x=\boxed{キ}$のとき最小値$\boxed{ク}$をとる。

ただし、$x$は$x\gt 0$を満たし、対数は自然対数とする。

なお、$\log 2=0.69,\log 3=1.10,\log 5=1.61,$

自然対数の底$e$は$2.72$として計算し、

$\boxed{キ}$と$\boxed{ク}$は小数で答えなさい。

値が小数第$2$位までで割り切れない場合は、

小数第$3$位を四捨五入して小数第$2$位まで求めなさい。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

大学入試問題#187 慶應義塾大学(2006) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^e}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。

出典:2006年慶應義塾大学 入試問題
この動画を見る 

工夫が大事!積分と確率の融合問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
サイコロを3回投げて出た目を順に$a,b,c$とするとき,

$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $

となる確率を求めよ。

一橋大過去問
この動画を見る 

北海道大 二次方程式解と係数 整数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#2次方程式と2次不等式#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 北海道大学過去問
$x^2-2px+p^2-2p-1=0$の2解を$α、β$とする。
$\displaystyle \frac{1}{2}$・$\displaystyle \frac{(α-β)^2-2}{(α+β)^2+2}$が整数となる実数$P$を全て求めよ
この動画を見る 
PAGE TOP