大学入試問題#59 京都大学(2007) 積分 - 質問解決D.B.(データベース)

大学入試問題#59 京都大学(2007) 積分

問題文全文(内容文):
$\displaystyle \int_{0}^{2}\displaystyle \frac{2x+1}{\sqrt{ x^2+4 }}\ dx$を計算せよ。

出典:2007年京都大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2}\displaystyle \frac{2x+1}{\sqrt{ x^2+4 }}\ dx$を計算せよ。

出典:2007年京都大学 入試問題
投稿日:2021.12.11

<関連動画>

大学入試問題#839「解法見えれば余裕!」 #上智大学(2005) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a_n=\displaystyle \frac{2n・3^n}{(2n+1)(2n+3)}$のとき、
$S_n=\displaystyle \frac{3^{n+1}}{2(2n+3)}-\displaystyle \frac{1}{2}$であることを示せ。

出典:2005年上智大学
この動画を見る 

自力で対数の範囲を求めて桁数を出す【数学 入試問題】【岐阜大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)不等式$\dfrac{3}{10}<log_{10} 2<\dfrac{4}{13}$を証明せよ。
(2)(1)を用いて、$2^{100}は何桁の数か答えよ。

岐阜大過去問
この動画を見る 

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$ 2人でサイコロを投げる。
1回目は$A$
$1,2,3\rightarrow$同じ人が投げる
$4,5\rightarrow$別の人が投げる
$6\rightarrow$勝ち、終了

(1)
$n$回目に$A$が投げる確率$a_{n}$は?

(2)
ちょうど$n$回目で$A$が勝つ確率は?

(3)
$n$回以内に$A$が勝つ確率は?

出典:一橋大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る 

大分大(医) 整数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7(x+y+z)=2(xy+yz+zx)$
$x,y,z$自然数 $x \leqq y \leqq z$
$(x,y,z)$の組すべて求めよ

出典:2007年大分大学医学部 過去問
この動画を見る 
PAGE TOP